Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Red-Emitting Ruthenium(II) and Iridium(III) Complexes as Phosphorescent Probes for Methylglyoxal in Vitro and in Vivo
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
Show others and affiliations
2017 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 3, 1309-1318 p.Article in journal (Refereed) Published
Abstract [en]

Transition-metal complexes, ruthenium(II) and iridium(III) complexes in particular, with fascinating triplet emissions are rapidly emerging as important phosphorescent dyes for application in the sensing and imaging of biological makers in live cells and organisms. In this contribution, two red-emitting transition-metal complexes, [Ru(bpy)2(DA-phen)](PF6)2 and [Ir(ppy)2(DA-phen)](PF6) (bpy = 2,2′-bipyridine, DA-phen = 4,5-diamino-1,10-phenanthroline, and ppy = 2-phenylpyridine), were designed and synthesized as phosphorescent probes for the highly sensitive and selective detection of methylglyoxal (MGO), an essential biomarker in the etiopathogenesis of several diseases. Both probes showed weak emissions in aqueous media because of the existence of an effective photoinduced-electron-transfer process, while their emissions could be remarkably enhanced upon the addition of MGO. The photophysical and electrochemical properties, as well as phosphorescent responses of the probes toward MGO, were examined. The ground- and excited-state properties of the probes and their reaction products with MGO, [Ru(bpy)2(MP-phen)](PF6)2 and [Ir(ppy)2(MP-phen)](PF6) (MP-phen = 2-methylpyrazino-1,10-phenanthroline), the sensing mechanism, and several important experimental facts were investigated and validated using density functional theory (DFT)/time-dependent DFT computations. The results indicated that the phosphorescence switch-ON is due to the elimination of electron transfer and followed the reestablishment of emissive triplet excited states. To evaluate the feasibility of [Ru(bpy)2(DA-phen)](PF6)2 and [Ir(ppy)2(DA-phen)](PF6) as bioprobes, their cytotoxicity was examined, and their applicability for visualizing intracellular and in vivo MGO was demonstrated.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 56, no 3, 1309-1318 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-208128DOI: 10.1021/acs.inorgchem.6b02443ISI: 000393630300036PubMedID: 28098984Scopus ID: 2-s2.0-85012004462OAI: oai:DiVA.org:kth-208128DiVA: diva2:1106113
Note

QC 20170607

Available from: 2017-06-07 Created: 2017-06-07 Last updated: 2017-06-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Wang, Yong-Lei
By organisation
Applied Physical Chemistry
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf