Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily
Show others and affiliations
2017 (English)In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 89, no 3, 429-441 p.Article in journal (Refereed) Published
Abstract [en]

Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii.

Place, publisher, year, edition, pages
Blackwell Publishing, 2017. Vol. 89, no 3, 429-441 p.
Keyword [en]
bioactive diterpenoids, convergent evolution, specialized metabolism, terpene synthase, Tripterygium wilfordii
National Category
Botany
Identifiers
URN: urn:nbn:se:kth:diva-208425DOI: 10.1111/tpj.13410ISI: 000395802900001PubMedID: 27801964ScopusID: 2-s2.0-85012994994OAI: oai:DiVA.org:kth-208425DiVA: diva2:1107222
Funder
Science for Life Laboratory - a national resource center for high-throughput molecular bioscienceNovo Nordisk
Note

QC 20170609

Available from: 2017-06-09 Created: 2017-06-09 Last updated: 2017-06-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Hallström, Björn M.
By organisation
Science for Life Laboratory, SciLifeLab
In the same journal
The Plant Journal
Botany

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf