Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mineral Type Structures Soil Microbial Communities
KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
Show others and affiliations
2017 (English)In: Geomicrobiology Journal, ISSN 0149-0451, E-ISSN 1521-0529, Vol. 34, no 6, p. 538-545Article in journal (Refereed) Published
Abstract [en]

Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.

Place, publisher, year, edition, pages
Taylor & Francis, 2017. Vol. 34, no 6, p. 538-545
Keywords [en]
Apatite, biotite, microbial ecology, oligoclase, podzol
National Category
Soil Science
Identifiers
URN: urn:nbn:se:kth:diva-208583DOI: 10.1080/01490451.2016.1225868ISI: 000401743100006Scopus ID: 2-s2.0-84996486105OAI: oai:DiVA.org:kth-208583DiVA, id: diva2:1107497
Funder
Swedish Research Council Formas, 2009-1501 2009-1174Swedish Research Council, 2011-5689Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Note

QC 20170609

Available from: 2017-06-09 Created: 2017-06-09 Last updated: 2017-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hugerth, Luisa W.Andersson, Anders F.
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLab
In the same journal
Geomicrobiology Journal
Soil Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf