Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Domain dynamics in stoichiometric lithium tantalate revealed by wet etching and on-line second harmonic generation
KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
2017 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 18, article id 184103Article in journal (Refereed) Published
Abstract [en]

The effect of chemical etching on the stability of domains in periodically poled stoichiometric lithium tantalate is studied by on-line second harmonic generation and microscopy. It is found that wet etching directly after poling leads to domain-wall movement, resulting in back-switching or domain merging. Head-to-head domains tend to backswitch, while tail-to-tail domains merge. For samples where the domain structure stabilized for longer time, no domain motion is observed when etched.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2017. Vol. 121, no 18, article id 184103
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-208816DOI: 10.1063/1.4982907ISI: 000401364700008Scopus ID: 2-s2.0-85018931797OAI: oai:DiVA.org:kth-208816DiVA, id: diva2:1108803
Note

QC 20170613

Available from: 2017-06-13 Created: 2017-06-13 Last updated: 2019-04-12Bibliographically approved
In thesis
1. Studies on Domain Dynamics in Nonlinear Optical Ferroelectric Oxide Crystals
Open this publication in new window or tab >>Studies on Domain Dynamics in Nonlinear Optical Ferroelectric Oxide Crystals
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nonlinear optical frequency conversion is the key technology for modifying laser output radiation, in order to target specific applications. The most powerful technique to obtain tailored second-order nonlinear interactions is the quasi-phasematching (QPM) approach. QPM is based on periodic modulation of the medium’s nonlinearity and allows versatile and efficient frequency conversion in the whole transparency region of the material. QPM is commonly implemented in ferroelectric oxide crystals by periodically inverting the spontaneous polarization, so-called, periodic poling. However, in order to achieve QPM structures of practical relevance, both the optical properties of the material and the domain engineering techniques have to be suitable for the targeted nonlinear interaction.

Rb-doped KTiOPO4 (RKTP) and vapor-transport-equilibrated stoichiometric LiTaO3 (VTE-SLT) are two of the most promising ferroelectric oxides used for nonlinear optics. The former is suitable for high peak-power applications and for engineering of QPM devices with sub-µm periodicity. The latter shows a short cut-off wavelength with low linear absorption, which makes it very attractive for UV-light generation. However, in order to fully exploit the potential of these two materials, it is of utmost importance to understand the domain dynamics and stability from a fundamental point of view, as well as to investigate ways to overcome their limitations.

This thesis presents studies on domain dynamics and stability in these two materials. A novel method for periodic poling of RKTP has been investigated. The method, based on using a micro-structured silicon chip as the contact electrode, has been used to fabricate periodically poled RKTP crystals with 9.01 µm period. The samples became well-poled and showed high conversion efficiency for second harmonic generation. The domain dynamics, when the silicon stamp was used as an electrode were studied, showing potential for short-pitch poling and complex patterning.

Furthermore, the domain stability in RKTP during thermal annealing at high temperatures was investigated. The results show anisotropic domain wall motion, with severe domain contraction along the crystallographic b-axis when the periodicity was reduced. A technique to suppress this domain contraction was developed based on dicing away the edges of the QPM grating so that the domain b-faces terminate in air. This gave excellent results for a broad range of periodicities.

Studies of the domain stability of periodically poled VTE-SLT during chemical etching were performed by on-line second harmonic generation, and optical microscopy. The results show that wet etching directly after poling leads to domain-wall motion, resulting in back-switching or domain merging. 

Furthermore, the domain wall motion induced by electron beam irradiation was investigated using a scanning electron microscope. It was found that domain switching strongly depends on the ratio of secondary electrons to incident electrons. These results are discussed in terms of electron beam and screening charges interaction.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 79
Series
TRITA-SCI-FOU ; 2019:17
National Category
Physical Sciences
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-249387 (URN)978-91-7873-165-7 (ISBN)
Public defence
2019-05-10, FA-31, Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190412

Available from: 2019-04-12 Created: 2019-04-11 Last updated: 2019-04-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kianirad, HodaZukauskas, AndriusCanalias, CarlotaLaurell, Fredrik
By organisation
Laser Physics
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 228 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf