Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-efficiency perovskite solar cells employing a conjugated donor-acceptor co-polymer as a hole-transporting material
Show others and affiliations
2017 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, no 44, 27189-27197 p.Article in journal (Refereed) Published
Abstract [en]

In this work, we have successfully introduced 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) as an efficient p-type dopant for donor-acceptor (D-A) co-polymer poly[2,6-(4,4-bis-(2ethylhexyl)- 4H-cyclopenta[2,1-b; 3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) as an HTM in mesoscopic perovskite solar cells (PSCs). The bulk conductivity is significantly enhanced by 4 orders of magnitude when PCPDTBT is doped with F4TCNQ (6%, w/w). UV-vis and Fourier transform infrared spectroscopy (FTIR) results indicate the occurrence of p-doping, which results in higher bulk conductivity. The high conductivity leads to an impressive overall efficiency of 15.1%, which is considerably higher than the pristine PCPDTBT based devices (9.2%). The superior performance obtained should be largely attributed to the significant enhancement of the photocurrent density strongly correlated with a more efficient charge collection. This is the highest efficiency reported so far for PCPDTBT-based PSCs. Thus, molecularly p-doping has been demonstrated to be an effective strategy for further improving the performance of a wide range of D-A and other types of polymeric HTMs in PSCs.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2017. Vol. 7, no 44, 27189-27197 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-209082DOI: 10.1039/c7ra04611aISI: 000402166600006OAI: oai:DiVA.org:kth-209082DiVA: diva2:1111462
Note

QC 20170619

Available from: 2017-06-19 Created: 2017-06-19 Last updated: 2017-06-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Chemistry
In the same journal
RSC Advances
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf