Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility
Show others and affiliations
2017 (English)In: Macromolecular Bioscience, ISSN 1616-5187, E-ISSN 1616-5195, Vol. 17, no 2Article in journal (Refereed) Published
Abstract [en]

In this study, heparin-mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb-like porous structure with well controlled thickness and show long-term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood-related complement activation also confirm that the membranes exhibit super-anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin-mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2017. Vol. 17, no 2
Keyword [en]
anticoagulation, heparin-mimicking, hydrogel thin films, hydrogels, poly(ether sulfone)
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-205116DOI: 10.1002/mabi.201600281ISI: 000394592600017Scopus ID: 2-s2.0-84989227648OAI: oai:DiVA.org:kth-205116DiVA: diva2:1112652
Note

QC 20170620

Available from: 2017-06-20 Created: 2017-06-20 Last updated: 2017-06-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhao, Weifeng
By organisation
Polymer Technology
In the same journal
Macromolecular Bioscience
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf