Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Catalysts promoted with niobium oxide for air pollution abatement
KTH.
2017 (English)In: Catalysts, ISSN 2073-4344, Vol. 7, no 5, 144Article in journal (Refereed) Published
Abstract [en]

Pt-containing catalysts are currently used commercially to catalyze the conversion of carbon monoxide (CO) and hydrocarbon (HC) pollutants from stationary chemical and petroleum plants. It is well known that Pt-containing catalysts are expensive and have limited availability. The goal of this research is to find alternative and less expensive catalysts to replace Pt for these applications. This study found that niobium oxide (Nb2O5), as a carrier or support for certain transition metal oxides, promotes oxidation activity while maintaining stability, making them candidates as alternatives to Pt. The present work reports that the orthorhombic structure of niobium oxide (formed at 800◦C in air) promotes Co3O4 toward the oxidation of both CO and propane, which are common pollutants in volatile organic compound (VOC) applications. This was a surprising result since this structure of Nb2O5 has a very low surface area (about 2 m2/g) relative to the more traditional Al2O3 support, with a surface area of 150 m2/g. The results reported demonstrate that 1% Co3O4/Nb2O5 has comparable fresh and aged catalytic activity to 1% Pt/γ-Al2O3 and 1% Pt/Nb2O5. Furthermore, 6% Co3O4/Nb2O5 outperforms 1% Pt/Al2O3 in both catalytic activity and thermal stability. These results suggest a strong interaction between niobium oxide and the active component—cobalt oxide—likely by inducing an oxygen defect structure with oxygen vacancies leading to enhanced activity toward the oxidation of CO and propane.

Place, publisher, year, edition, pages
MDPI AG , 2017. Vol. 7, no 5, 144
Keyword [en]
CO and propane oxidation, Cobalt on Nb2O5 catalyst, Promoting effects of Nb2O5
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-209737DOI: 10.3390/catal7050144Scopus ID: 2-s2.0-85019616270OAI: oai:DiVA.org:kth-209737DiVA: diva2:1114033
Note

QC 20170622

Available from: 2017-06-22 Created: 2017-06-22 Last updated: 2017-06-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Astorsdotter, Jennifer
By organisation
KTH
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf