Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation-driven development of a novel SiC embedded power module design concept
KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. RISE Acreo AB, Sweden.ORCID iD: 0000-0001-5731-7859
Show others and affiliations
2017 (English)In: 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 7926252Conference paper, Published paper (Refereed)
Abstract [en]

Silicon carbide embedded power modules enable a compact and cost competitive packaging solution for high-switching frequency and high-temperature operation applications. Power module packaging technologies span several engineering domains. At the early design stage, simulation-driven development is necessary to shorten the design period and reduce the design cost. This paper presents a novel design concept of a three-phase embedded power module (1200 V, 20 A, 55 mm × 36 mm × 0.808 mm) including silicon carbide metal-oxide-semiconductor field-effect transistor and antiparallel diode dies. Based on the E/CAD design data different layer built-up designs have been tested against thermal, mechanical, and electrical behavior. The obtained simulation data then have been evaluated against a commercial available power module (Motion Smart Power Module SMP33) which utilizes over mold direct bonded copper substrates with soldered semiconductor dies and bond wire contacts. Compared to the conventional module, the loop conductive interconnection parasitic inductance and resistance of the design concept (Vdc+ to Vdc-) reduces approximately by 88 % and 72 %, respectively. The average junction to case thermal resistance has been improved by approximately more than 10 % even though the total package size reduces by approximately 88 %. Furthermore, the contours of deformation and stresses have been investigated for the design concept in the thermomechanical simulation.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2017. article id 7926252
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-209729DOI: 10.1109/EuroSimE.2017.7926252ISI: 000403217700041Scopus ID: 2-s2.0-85020187958ISBN: 9781509043446 (print)OAI: oai:DiVA.org:kth-209729DiVA, id: diva2:1114849
Conference
18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2017, Dresden, Germany, 3 April 2017 through 5 April 2017
Note

QC 20170626

Available from: 2017-06-26 Created: 2017-06-26 Last updated: 2018-05-21Bibliographically approved
In thesis
1. Multiphysics Characterization of SiC Power Modules
Open this publication in new window or tab >>Multiphysics Characterization of SiC Power Modules
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis proposes several novel silicon carbide power module design concepts. The goal has been to address the problems with the present designs. The electrical, thermal, and thermomechanical performances of the demonstrators have been evaluated along with presentations of methodologies of experimental and numerical characterizations.

Compact high-temperature power modules with adequate cooling systems are attractive to automotive applications. Therefore, a novel thermal design of a double-sided liquid/air cooled silicon carbide power module (1200 V, 200 A) has been proposed. The concept integrates a dc-link capacitor, a gate driver board, and finned cooling channels. The cooling concept has been evaluated for three application scenarios based on a validated computational fluid dynamics model. Moreover, a simulation methodology has been developed to quantify the effect of different materials and thicknesses of the cold plates on the temperature of the silicon carbide power dies.

For medium- and high-power applications, contemporary research concludes that the reliability of the existing packaging technology needs to be improved. Therefore, this work proposes a novel press-pack silicon carbide power module concept. The concept enables bondless package and allows for an order of magnitude higher clamping force on the heatsinks than what can be applied on the dies. First, experimental and numerical methodologies for thermomechanical performance characterization of a press-pack structure have been investigated. By using digital image correlation technique, the deformation of each stacked material layer has been obtained. The developed experiment has led to an analytical estimation of friction coefficients on the contact interfaces. The co-influence of the design parameters on the thermomechanical performance of the press-pack structure has been analyzed through a parametric study based on a finite element model. Second, the novel double press-pack silicon carbide power module concept has been evaluated in a demonstrator in terms of parasitic inductance, thermal resistance, and thermomechanical stress.

Furthermore, many of the power module designs only stay at the stage of proof-of-concept due to the cost of retooling of the manufacturing facility. Embedded power modules which employ advanced printed circuit board processing and die embedding technologies, enable a solution with possibility of low cost and mass production. Therefore, a novel design concept of a three-phase embedded power module (1200 V, 20 A) has been proposed. Simulation-driven design development has been implemented and lead to a fabricated demonstrator. The electromagnetic, thermal, and thermomechanical performances of the concept have been evaluated by simulations and compared to a commercially available power module.

Abstract [sv]

Denna avhandling föreslår flera nya koncept för effektmoduler för effekthalvledarkomponenter i kiselkarbid. Målet har varit att belysa problemen med existerande lösningar. Elektriska, termiska och termomekaniska egenskaper hos demonstratorer har utvärderats tillsammans med beskrivningar av metoder för experimentell och numerisk karakterisering.

Kompakta moduler för höga temperaturer med anpassade kylsystem är attraktiva i fordonstillämpningar. För detta ändamål har en termisk konstruktion av en dubbelsidigt luft/vatten-kyld effektmodul (1200 V, 200 A) tagits fram. Konceptet inkluderar mellanledskondensator, gate-drivdon och kylkanaler med kylflänsar. Kylkonceptet har utvärderats med avseende på tre scenarier baserade på en validerad flödesdynamisk numerisk modell. Dessutom har en simuleringsmetod utvecklats med vilken temperaturen hos kiselkarbid-chipen kan kvantifieras beroende på val av olika material och materialtjocklek hos kylblocken.

För medel- och hög-effekt tillämpningar anses allmänt att kapslingsteknikens tillförlitlighet bör förbättras. Därför föreslås i detta arbete ett nytt presspack-koncept för kiselkarbidkomponenter. Konceptet möjliggör bondtrådslös kontaktering och tillåter en storleksordning högre inspänningstryck på kylarna än vad chipen tillåter. I ett första skede har metoder för experimentell och numerisk karakterisering av termomekaniska prestanda för presspack-strukturer undersökts. Genom att använda digital bildkorrelationsteknik har deformationen hos varje skikt i strukturen kunnat bestämmas. Det utvecklade experimentet har lett fram till en analytisk bestämning av friktionskoefficienter på kontaktytorna. Den kombinerade inverkan av olika konstruktionsparametrar har analyserats genom en parametrisk studie som baseras på en finit-element-modell. I det senare skedet har det föreslagna presspack-konceptet utvärderats med hjälp av en experimentell prototyp. Parasitisk induktans, termisk resistans och termomekaniska spänningar har undersökts.

Många nya kapslingskoncept stannar på det konceptuella stadiet pga kostnader för produktionsverktyg. Inbäddade effektmoduler som använder avancerade mönsterkortsmetoder och chip-integrationsteknik, möjliggör lösningar med låga tillverkningskostnader vid massproduktion. Med detta i åtanke har ett koncept för en inbäddad trefasmodul (1200 V, 20 A) tagits fram. Simuleringsdriven konstruktion har använts för att färdigställa en prototyp. Elektromagnetiska, termiska och termomekaniska egenskaper för konceptet har utvärderats genom simuleringar och jämförelser med en kommersiellt tillgänglig effektmodul.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018. p. 66
Series
TRITA-EECS-AVL ; 2018:44
Keyword
Silicon carbide, power electronics, power electronics packaging, experiment, modeling and simulation, computational fluid dynamics, finite element analysis, multiphysics, Kiselkarbid, effektelektronik, effektelektronisk kapsling, experiment, modellering och simulering, flödesdynamisk numerisk modellering, finit-element-analys, multifysik
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-228068 (URN)978-91-7729-818-2 (ISBN)
Public defence
2018-06-15, K2, Teknikringen 28, Kemi, floor 5, KTH Campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180521

Available from: 2018-05-21 Created: 2018-05-17 Last updated: 2018-05-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhang, YafanNee, Hans-Peter
By organisation
Electric Power and Energy Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf