Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.ORCID iD: 0000-0002-3661-7016
2017 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 4, 481Article in journal (Refereed) Published
Abstract [en]

Water is the most desirable and sparse resource in Gulf cooperation council (GCC) region. Utilization of point-of-use (POU) water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD) process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD) system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

Place, publisher, year, edition, pages
MDPI AG , 2017. Vol. 10, no 4, 481
Keyword [en]
solar domestic hot water (SDHW), co-production, membrane distillation (MD), solar combi, thermal storage
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-208255DOI: 10.3390/en10040481ISI: 000400065000070OAI: oai:DiVA.org:kth-208255DiVA: diva2:1114876
Note

QC 20170626

Available from: 2017-06-26 Created: 2017-06-26 Last updated: 2017-06-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kumar, Nutakki Tirumala UdayMartin, Andrew R.
By organisation
Energy Technology
In the same journal
Energies
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf