Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermodynamic and diffusion kinetic studies of the Fe-Co system
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Shanghai University, China.
2017 (English)In: Calphad, ISSN 0364-5916, E-ISSN 1873-2984, Vol. 58, 82-100 p.Article in journal (Refereed) Published
Abstract [en]

The phase equilibria, thermodynamic properties and diffusion mobilities of the Fe-Co system were carefully assessed through the CALPHAD methods. As an indispensable tool, the first-principles calculations were carried out to study the magnetic moments and the enthalpies of mixing of the bcc_A2, bcc_B2, fcc_A1 and hcp_A3 phases as well as the point defect types of the bcc_B2 phase. In order to verify the heat capacities reported in the literature, new measurements were conducted in a high-temperature calorimetric apparatus using the three-dimensional calorimetric method. Because of the revision of the thermodynamic parameters in the present work, the diffusion mobilities for the fcc_A1 phase were reassessed. The diffusion mobilities for the bcc_A2 phase were established for the first time based on the experimental diffusion coefficients. For the low-temperature bcc_B2 phase, the diffusion couple experiments conducted in the present work show that the diffusion process is sluggish and the interdiffusion coefficients are difficult to determine. Therefore the tracer diffusivities of Co and Fe in the Fe-Co alloys were used to assess the diffusion mobilities for the bcc_B2 phase, while the composition-distance profile of one diffusion couple was served as a validation of its diffusion mobilities.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 58, 82-100 p.
Keyword [en]
CALPHAD, Diffusion mobility, Fe-Co, First-principles calculations, Thermodynamics
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-209862DOI: 10.1016/j.calphad.2017.06.001Scopus ID: 2-s2.0-85020396183OAI: oai:DiVA.org:kth-209862DiVA: diva2:1115190
Note

QC 20170626

Available from: 2017-06-26 Created: 2017-06-26 Last updated: 2017-06-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zheng, Weisen
By organisation
Materials Science and Engineering
In the same journal
Calphad
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf