Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integrating geothermal into coal-fired power plant with carbon capture: A comparative study with solar energy
Show others and affiliations
2017 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 148, 569-582 p.Article in journal (Refereed) Published
Abstract [en]

A new system integrating geothermal energy into post-combustion carbon capture is proposed in this paper. Geothermal energy at medium temperatures is used to provide the required thermal heat for solvent regeneration. The performance of this system is compared with solar assisted carbon capture plant via technical and economic evaluation. A 300 MWe coal-fired power plant is selected as the reference case, and two different locations based on the local climatic conditions and geothermal resources are chosen for the comparison. The results show that the geothermal assisted post-combustion carbon capture plant has better performances than the solar assisted one in term of the net power output and annual electricity generation. The net plant average efficiency based on lower heating value can be increased by 2.75% with a thermal load fraction of about 41%. Results of economic assessment show that the proposed geothermal assisted post-combustion carbon capture system has lower levelized costs of electricity and cost of carbon dioxide avoidance compared to the solar assisted post-combustion carbon capture plant. In order to achieve comparative advantages over the reference post-combustion carbon capture plant in both locations, the price of solar collector has to be lower than 70 USD/m2, and the drilling depth of the geothermal well shall be less than 2.1 km.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 148, 569-582 p.
Keyword [en]
CO2 avoidance, Geothermal, Levelized costs of electricity, Post-combustion CO2 capture, Solar thermal energy, System integration
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-210190DOI: 10.1016/j.enconman.2017.06.016Scopus ID: 2-s2.0-85020726115OAI: oai:DiVA.org:kth-210190DiVA: diva2:1117454
Note

QC 20170629

Available from: 2017-06-29 Created: 2017-06-29 Last updated: 2017-06-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Yan, Jinyue
By organisation
Energy Processes
In the same journal
Energy Conversion and Management
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf