Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of flow and mixing in 3D rough-walled rock fracture intersections
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
2017 (English)In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 107, 1-9 p.Article in journal (Refereed) Published
Abstract [en]

The processes of fluid flow and solute transport through rock fractures are of primary importance in environmental engineering and geosciences. This study presented numerical modeling results of fluid flow and solute transport in a 3D rock fracture-matrix system with an orthogonal intersection of two rough-walled rock fractures. The rough-walled fracture geometry models were built from laser-scanned data of a real rock surface, for a realistic representation of natural rock fracture surface roughness. The fluid flow in the two intersected fractures and solute transport in the fracture-matrix system were simulated by solving the Navier–Stokes equations (NSE) and transport equation in the entire system. The dependence of mixing on Péclet number (Pe) and flow directionality features were analyzed. The results directly visualized important channeling flow patterns that significantly enhanced the solute mixing process at the rough-walled fracture intersection. The illustrated channeling flow and associated impacts on mixing are particularly important in the prediction of solute transport in natural fractured rocks, especially when discrete fracture network (DFN) approach is applied.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 107, 1-9 p.
National Category
Geophysical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-210268DOI: 10.1016/j.advwatres.2017.06.003Scopus ID: 2-s2.0-85020762478OAI: oai:DiVA.org:kth-210268DiVA: diva2:1118289
Note

QC 20170630

Available from: 2017-06-30 Created: 2017-06-30 Last updated: 2017-06-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zou, LiangchaoJing, LanruCvetkovic, Vladimir
By organisation
Land and Water Resources Engineering
In the same journal
Advances in Water Resources
Geophysical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf