Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Filter media-packed bed reactor fortification with biochar to enhance wastewater treatment
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.ORCID iD: 0000-0002-5702-2820
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Contamination of water bodies with inappropriately released, poorly treated wastewater from rural establishments is a challenge world-wide. Rural communities in developed countries are now required to comply with statutory discharge limits, but less costly alternative technologies by which to comply are scarce. However, it is possible that retrofitting on-site facilities with specialist treatment units could provide a feasible solution. This study tested the effectiveness of retrofitting sand (Sa)- and gas-concrete (GC)-packed down-flow reactors with biochar (BC) in removing turbidity, dissolved organic carbon (DOC), phosphate (PO43-) and total phosphorus (TP) from wastewater. The reactors were each intermittently loaded with 0.063 L/d for 399 days. In general, all reactors achieved <3 NTU effluent turbidity (99% efficiency). The GC reactors were best at removing incoming PO43- (6.1 mg/L) and DOC (25.3 mg/L), trapping >95% and >60%, respectively. Compared with a reference Sa reactor (PO43- removal 35%; DOC removal 52%), the fortified sand (Sa-BC) filter removed significantly more PO43- (>45% removal, p=0.022) and DOC (>58% removal, p=0.034). In regression analysis, 53%, 81% and 85% of PO43- sorption variation in Sa, BC and Sa-BC filters, respectively, was explained by variations in reactor effluent pH. Similarly, a strong linear correlation was found between PO43- sorption efficiency and the pH of fortified (GC-BC, r > 0.7) and reference (r = 0.6) GC filters, suggesting chemisorption mechanisms. Therefore, if only sand is readily available for treating septic tank effluent, fortifying it with biochar could be a possible measure to improve its efficacy.

Keyword [en]
Wastewater treatment, Biochar, Packed bed reactor, Fortification, Phosphorus, Dissolved organic carbon
National Category
Environmental Engineering
Research subject
Land and Water Resources Engineering
Identifiers
URN: urn:nbn:se:kth:diva-210662OAI: oai:DiVA.org:kth-210662DiVA: diva2:1119170
Note

QCR 20170704

Available from: 2017-07-03 Created: 2017-07-03 Last updated: 2017-07-04Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Kholoma, EzekielRenman, AgnieszkaRenman, Gunno
By organisation
Water and Environmental Engineering
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf