Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Background-Force Compensation in Dynamic Atomic Force Microscopy
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0001-8199-5510
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0002-4331-6940
KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.ORCID iD: 0000-0003-0675-974X
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
Show others and affiliations
2017 (English)In: Physical Review Applied, E-ISSN 2331-7019, Vol. 7, no 6, article id 064018Article in journal (Refereed) Published
Abstract [en]

Background forces are linear long-range interactions of the cantilever body with its surroundings that must be compensated for in order to reveal tip-surface force, the quantity of interest for determining material properties in atomic force microscopy. We provide a mathematical derivation of a method to compensate for background forces, apply it to experimental data, and discuss how to include background forces in simulation. Our method, based on linear-response theory in the frequency domain, provides a general way of measuring and compensating for any background force and it can be readily applied to different force reconstruction methods in dynamic AFM.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2017. Vol. 7, no 6, article id 064018
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-210353DOI: 10.1103/PhysRevApplied.7.064018ISI: 000403252100001Scopus ID: 2-s2.0-85021101671OAI: oai:DiVA.org:kth-210353DiVA, id: diva2:1119530
Note

QC 20170704

Available from: 2017-07-04 Created: 2017-07-04 Last updated: 2018-09-26Bibliographically approved
In thesis
1. Probing nonlinear electrical properties at the nanoscale: Studies in multifrequency AFM
Open this publication in new window or tab >>Probing nonlinear electrical properties at the nanoscale: Studies in multifrequency AFM
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanostructured materials promise great advances in diverse and active research fields such as energy harvesting and storage, corrosion prevention and high-density memories. Electrical characterization at the nanometer scale is key to understanding and optimizing the performance of these materials, and therefore central to the progress of nanotechnology. One of the most versatile tools for this purpose is the atomic force microscope (AFM), thanks to its ability to image surfaces with high spatial resolution.

In this thesis we present several multifrequency techniques for AFM. Intermodulation electrostatic force microscopy (ImEFM) measures the potential of a surface with low noise and high spatial resolution. In contrast to traditionally available methods, ImEFM does not use a feedback-controlled bias to measure the surface potential, and is therefore suitable to measurements in liquid environments. Removing feedback allows the applied bias to be used for investigating charge injection and extraction on nanocomposite materials. Intermodulation conductive AFM (ImCFM) measures the current-voltage characteristic of a sample at every point of an AFM image. ImCFM is able to separate the galvanic and displacement contributions to the measured current, improving the measurement speed by four orders of magnitude compared to previously available methods. We finally demonstrate an alternative approach to pump-probe spectroscopy, which allows the AFM to measure electrical charge dynamics with a time resolution approaching the nanosecond range.

These techniques are based on intermodulation spectroscopy, and they demonstrate the power and flexibility of measuring and analyzing nonlinear response in the frequency domain. The nonlinearity of the tip-surface force is used to concentrate response in a narrow band around the resonance of the AFM cantilever, where force measurement sensitivity is at the thermal limit. In this narrow band, we perform coherent measurements at multiple frequencies by exploiting the stability of a single reference oscillation. The power of the multifrequency approach is nicely demonstrated in a general method for measuring and compensating background forces, i.e. long-range linear forces that act on the body of the AFM probe. This compensation is necessary to reveal the the true force between the surface and the AFM tip. We show the effect of the compensation on soft polymer materials, where the background forces are typically strongest.

Abstract [sv]

Nanostrukturerade material utlovar stora framsteg inom olika forskningsområden som till exempel energiutvinning och lagring, korrosionförebyggande beläggningar och högdensitetsminnen. Elektrisk karakterisering på nanometerskalan är nyckeln till förståelse och optimering av ett materials prestanda, och därmed central för utvecklingen av nanoteknik. Ett av de mest mångsidiga verktygen för detta ändamål är atomkraftmikroskopet (AFM), tack vare dess förmåga att avbilda ytor med hög spatial upplösning.

I denna avhandling presenteras flera multifrekvenstekniker för AFM. Intermodulationselektrostatiskkraftmikroskopi (ImEFM) mäter en ytas ytpotential med lågt brus och hög upplösning. Till skillnad från traditionellt tillgängliga metoder behöver ImEFM inte någon återkopplingsstyrd spänning för att mäta ytpotentialen och är därför lämplig att använda för mätningar i vätska. Genom att ta bort återkopplingen kan den applicerade spänningen istället användas för att undersöka laddningsinjektion och extraktion hos nanokompositmaterial. Intermodulationsström AFM (ImCFM) mäter ström-spänningsegenskaperna hos ett prov vid varje punkt i en AFM-bild. ImCFM kan särskilja galvanisk- och förskjutningsström i mätningar, vilket förbättrar mäthastigheten med fyra storleksordningar jämfört med tidigare tillgängliga metoder. Vi visar slutligen ett alternativ till pump-probespektroskopi, som gör att AFM kan mäta elektrisk laddningsdynamik med en tidsupplösning som närmar sig nanosekunder.

Alla dessa tekniker bygger på intermodulationsspektroskopi, och de visar kraften och flexibiliteten med att mäta och analysera olinjära signal i frekvensområdet. Icke-linjäriteten hos kraften mellan en AFM-spets och en yta används för att koncentrera svaret i ett smalt frekvensband runt AFM-cantileverens resonans, där känsligheten för att mäta kraft är termiskt begränsad. I detta smala band utför vi koherenta mätningar vid flera frekvenser genom att utnyttja stabiliteten hos en enda referensoscillator. Fördelen med denna multifrekvensmetod demonstreras i en allmän metod för att mäta och kompensera bakgrundskrafter, linjära krafter som verkar över långt avstånd på hela AFM-cantilevern. Denna kompensation är nödvändig för att avslöja den sanna kraften mellan ytan och AFM-spetsen. Vi visar effekten av kompensationen på mjuka polymermaterial, där bakgrundskrafterna typiskt är starka.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 82
Series
TRITA-SCI-FOU ; 2018:38
Keywords
Atomic Force Microscopy, Nonlinear dynamics, Multifrequency, Contact potential difference, Conductance, Fast dynamics
National Category
Condensed Matter Physics Nano Technology
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-235315 (URN)978-91-7729-952-3 (ISBN)
Public defence
2018-10-26, FB42, Albanova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Note

QC 20180927

Available from: 2018-09-27 Created: 2018-09-26 Last updated: 2018-09-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Borgani, RiccardoThorén, Per-AndersForchheimer, DanielDobryden, IlliaHaviland, David B.

Search in DiVA

By author/editor
Borgani, RiccardoThorén, Per-AndersForchheimer, DanielDobryden, IlliaSah, Si MohamedClaesson, Per MartinHaviland, David B.
By organisation
Nanostructure PhysicsSurface and Corrosion ScienceKTH
In the same journal
Physical Review Applied
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf