Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
N-Insertion reaction mechanisms of phenyl azides with a hafnium hydride complex: a quantum chemistry calculation
Show others and affiliations
2017 (English)In: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 41, no 12, 5007-5011 p.Article in journal (Refereed) Published
Abstract [en]

Density functional theory (DFT) calculations were performed to investigate the detailed mechanisms for the N-insertion reaction of phenyl azides with a hafnium hydride complex. This reaction involves an intermolecular hydride transfer from the hafnium center of complex 1 (Cp2HfH2)-Hf-star to the terminal nitrogen atom of a phenyl azide. Subsequently, a 1,3 hydrogen shift from the N1 atom to the N3 atom takes place, accompanied by cleavage of the N2-N3 bond to provide amido complex 3 (Cp2HfH)-Hf-star(NHPh) and dinitrogen. A further reaction is related to the intermolecular hydride transfer from the hafnium center to the N1' atom of a second phenyl azide, followed by the formation of the final product, bis(amido) complex 9 (Cp2HfH)-Hf-star(NHPh)(2) via the liberation of the second dinitrogen, which is the rate-determining step with an overall barrier of 29.8 kcal mol(-1). Frontier molecular orbital theory analysis shows that phenyl azides are activated by nucleophilic attack by the hydride ligand, which is consistent with our previous studies of N2O activation by other transition-metal hydride complexes.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2017. Vol. 41, no 12, 5007-5011 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-210346DOI: 10.1039/c7nj00411gISI: 000403340100043OAI: oai:DiVA.org:kth-210346DiVA: diva2:1119557
Note

QC 20170704

Available from: 2017-07-04 Created: 2017-07-04 Last updated: 2017-07-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Fan, Ting
By organisation
Theoretical Chemistry and Biology
In the same journal
New Journal of Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf