Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide
KTH, School of Information and Communication Technology (ICT), Electronics.
KTH, School of Information and Communication Technology (ICT), Electronics.
KTH, School of Information and Communication Technology (ICT), Electronics.ORCID iD: 0000-0002-5845-3032
KTH, School of Information and Communication Technology (ICT), Electronics.ORCID iD: 0000-0001-8108-2631
2017 (English)In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 46, no 7, 4478-4484 p.Article in journal (Refereed) Published
Abstract [en]

4H-SiC electronics can operate at high temperature (HT), e.g., 300A degrees C to 500A degrees C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P-E hysteresis loops measured at room temperature showed maximum 2P (r) of 48 mu C/cm(2), large enough for wide read margins. P-E loops were measurable up to 450A degrees C, with losses limiting measurements above 450A degrees C. The phase-transition temperature was determined to be about 660A degrees C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

Place, publisher, year, edition, pages
SPRINGER , 2017. Vol. 46, no 7, 4478-4484 p.
Keyword [en]
Ferroelectric, high temperature (HT), memory device, silicon carbide (4H-SiC), thin film, vanadium-doped bismuth titanate (BiTV)
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-210461DOI: 10.1007/s11664-017-5447-3ISI: 000403016800089Scopus ID: 2-s2.0-85015704004OAI: oai:DiVA.org:kth-210461DiVA: diva2:1120481
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20170706

Available from: 2017-07-06 Created: 2017-07-06 Last updated: 2017-07-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Ekström, MattiasÖstling, MikaelZetterling, Carl-Mikael

Search in DiVA

By author/editor
Ekström, MattiasKhartsev, SergiyÖstling, MikaelZetterling, Carl-Mikael
By organisation
Electronics
In the same journal
Journal of Electronic Materials
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf