Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis and Sintering of ZnO Nanopowders
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0003-3060-9987
Show others and affiliations
2017 (English)In: TECHNOLOGIES, ISSN 2227-7080, Vol. 5, no 2, 28Article in journal (Refereed) Published
Abstract [en]

Nanopowders are continuously under investigation as they open new perspectives in numerous fields. There are two main challenges to stimulating their development: sufficient low-cost, high throughput synthesis methods which lead to a production with well-defined and reproducible properties; and for ceramics specifically, the conservation of the powders' nanostructure after sintering. In this context, this paper presents the synthesis of a pure nanosized powder of ZnO (dv(50)similar to 60 nm, easily redispersable) by using a continuous Segmented Flow Tubular Reactor (SFTR), which has previously shown its versatility and its robustness, ensuring a high powder quality and reproducibility over time. A higher scale of production can be achieved based on a "scale-out" concept by replicating the tubular reactors. The sinterability of ZnO nanopowders synthesized by the SFTR was studied, by natural sintering at 900 degrees C and 1100 degrees C, and Spark Plasma Sintering (SPS) at 900 degrees C. The performance of the synthesized nanopowder was compared to a commercial ZnO nanopowder of high quality. The samples obtained from the synthesized nanopowder could not be densified at low temperature by traditional sintering, whereas SPS led to a fully dense material after only 5 min at 900 degrees C, while also limiting the grain growth, thus leading to a nanostructured material.

Place, publisher, year, edition, pages
MDPI AG , 2017. Vol. 5, no 2, 28
Keyword [en]
ZnO, ceramic nanopowders, Segmented Flow Tubular Reactor (SFTR), Spark Plasma Sintering (SPS)
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-211026DOI: 10.3390/technologies5020028ISI: 000404135500007OAI: oai:DiVA.org:kth-211026DiVA: diva2:1121677
Note

QC 20170712

Available from: 2017-07-12 Created: 2017-07-12 Last updated: 2017-07-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Zhao, Zhe

Search in DiVA

By author/editor
Zhao, Zhe
By organisation
Materials Science and Engineering
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf