Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solidification studies of 6xxx alloys with different Mg and Si contents
2005 (English)In: LIGHT METALS 2005, 2005, 1039-1044 p.Conference paper, Published paper (Refereed)
Abstract [en]

Directional solidification studies, simulating billet casting, have been made off alloys with balanced and not balanced Mg and Si additions, and with different alloying levels ranging from 6063 to 6082.

The effects of growth rate, grain refinement, temperature gradient and composition on structure formation have been investigated. Increased alloy content strongly influence the solidification structure, but during cooling the coarsening process decrease the differences, and relatively similar structures are obtained at room temperature. Segregation to the surface zone is proposed to have an effect on surface defect formation.

Place, publisher, year, edition, pages
2005. 1039-1044 p.
Series
LIGHT METALS, ISSN 0147-0809
Keyword [en]
aluminum; AA 6000 alloys, directional solidification, microstructure coarsening, surface defects
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-6495ISI: 000228234700182ISBN: 0-87339-580-8 (print)OAI: oai:DiVA.org:kth-6495DiVA: diva2:11223
Conference
Technical Session on Light Metals 2005 held at the 134th TMS Annual Meeting San Francisco, CA, FEB 13-17, 2005 Minerals, Met & Mat Soc; TMS Aluminum Comm
Note
QC 20100901Available from: 2006-12-05 Created: 2006-12-05 Last updated: 2010-12-06Bibliographically approved
In thesis
1. The Effect of Processing Parameters and Alloy Composition on the Microstructure Formation and Quality of DC Cast Aluminium Alloys
Open this publication in new window or tab >>The Effect of Processing Parameters and Alloy Composition on the Microstructure Formation and Quality of DC Cast Aluminium Alloys
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The objective of this research is to increase the understanding of the solidification behaviour of some industrially important wrought aluminium alloys. The investigation methods range from direct investigations of as-cast ingots to laboratory-scale techniques in which ingot casting is simulated. The methods span from directional solidification at different cooling rates to more fundamental and controlled techniques such as DTA and DSC. The microstructure characteristics of the castings have been investigated by optical and Scanning Electron microscopy. Hardness tests were used to evaluate the mechanical properties.

The effects of adding alloying elements to 3XXX and 6XXX aluminium alloys have been studied with special focus on the effects of Zn, Cu, Si and Ti. These elements influence the strength and corrosion properties, which are important for the performance of final components of these alloys.

Solidification studies of 0-5wt% Zn additions to 3003 alloys showed that the most important effect on the microstructure was noticed at 2.5 wt% Zn, where the structure was fine, and the hardness had a maximum. Si addition to a level of about 2% gave a finer structure, having a relatively large fraction of eutectic structure, however, it also gave a long solidification interval. The addition of small amounts of Cu, 0.35 and 1.0 wt%, showed a beneficial effect on the hardness.

Differences have been observed in the ingot surface microstructures of 6xxx billets with different Mg and Si ratios. Excess Si compositions showed a coarser grain structure and more precipitations with possible negative implications for surface defect formation during DC casting.

The comparison of alloys of different Ti content showed that the addition of titanium to a level of about 0.15 wt% gave a coarser grain structure than alloys with a normal Ti content for grain refinement, i.e. < 0.02 wt%, although a better corrosion resistance can be obtained at higher Ti contents. The larger grain size results in crack sensitivity during DC casting. A macroscopic etching technique was developed, based on a NaOH solution, and used in inclusion assessment along DC cast billets. Good quantitative data with respect to the size and spatial distribution of inclusions were obtained. The results from studied billets reveal a decreasing number of inclusions going from bottom to top, and the presence of a ring-shaped distribution of a large number of small defects in the beginning of the casting.

The present study shows how composition modifications, i.e. additions of certain amounts of alloying elements to the 3xxx and 6xxx Al alloys, significantly change the microstructures of the materials, its castability, and consequently its mechanical properties

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. v, 41 p.
Keyword
Aluminium wrought alloys, AA3xxx and 6xxx, Direct Chill Casting, Unidirectional Solidification, Bridgman technique, Process parameters, Microstructure, Composition modification, Thermal analysis, Inclusions, Metallographical investigations
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-4205 (URN)91-7178-496-9 (ISBN)
Public defence
2006-12-14, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:15
Opponent
Supervisors
Note
QC 20100901Available from: 2006-12-05 Created: 2006-12-05 Last updated: 2010-09-01Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Jaradeh, MajedCarlberg, TorbjörnHu, Jin
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 139 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf