Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of titanium additions on the microstructure of DC-cast aluminium alloys
2005 (English)In: Materials Science and Engineering A, ISSN 0921-5093, Vol. 413-414, 277-282 p.Article in journal (Refereed) Published
Abstract [en]

The effect of the Ti content on the solidification structures of aluminum alloys of AA3003 type was investigated. Some improved corrosion properties can be obtained from increasing the Ti contents in aluminium alloys to a level above the normal practice for grain refinement. However, increasing the Ti content above the peritectic point, 0.15%, can influence the grain refinement and cause casting difficulties. The investigation was made by both characterizing the grain structure over the width of DC-cast rolling ingots of different alloys, and by studying the solidification microstructure of Bridgman directional solidified samples, grown to simulate ingot solidification. Structure properties such as grain size, distances between secondary phases and microstructure coarsening were studied. It was found that with normal Ti contents in the range of 0.015%, the grain refinement is effective. However, upon larger Ti additions to levels around 0.15% the grain structure becomes coarser.

Place, publisher, year, edition, pages
2005. Vol. 413-414, 277-282 p.
Keyword [en]
aluminium, titanium, wrought alloys, directional solidification, grain size, microstructure
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-6498DOI: 10.1016/j.msea.2005.09.006ISI: 000234202900045OAI: oai:DiVA.org:kth-6498DiVA: diva2:11226
Note
QC 20100901Available from: 2006-12-05 Created: 2006-12-05 Last updated: 2010-12-06Bibliographically approved
In thesis
1. The Effect of Processing Parameters and Alloy Composition on the Microstructure Formation and Quality of DC Cast Aluminium Alloys
Open this publication in new window or tab >>The Effect of Processing Parameters and Alloy Composition on the Microstructure Formation and Quality of DC Cast Aluminium Alloys
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The objective of this research is to increase the understanding of the solidification behaviour of some industrially important wrought aluminium alloys. The investigation methods range from direct investigations of as-cast ingots to laboratory-scale techniques in which ingot casting is simulated. The methods span from directional solidification at different cooling rates to more fundamental and controlled techniques such as DTA and DSC. The microstructure characteristics of the castings have been investigated by optical and Scanning Electron microscopy. Hardness tests were used to evaluate the mechanical properties.

The effects of adding alloying elements to 3XXX and 6XXX aluminium alloys have been studied with special focus on the effects of Zn, Cu, Si and Ti. These elements influence the strength and corrosion properties, which are important for the performance of final components of these alloys.

Solidification studies of 0-5wt% Zn additions to 3003 alloys showed that the most important effect on the microstructure was noticed at 2.5 wt% Zn, where the structure was fine, and the hardness had a maximum. Si addition to a level of about 2% gave a finer structure, having a relatively large fraction of eutectic structure, however, it also gave a long solidification interval. The addition of small amounts of Cu, 0.35 and 1.0 wt%, showed a beneficial effect on the hardness.

Differences have been observed in the ingot surface microstructures of 6xxx billets with different Mg and Si ratios. Excess Si compositions showed a coarser grain structure and more precipitations with possible negative implications for surface defect formation during DC casting.

The comparison of alloys of different Ti content showed that the addition of titanium to a level of about 0.15 wt% gave a coarser grain structure than alloys with a normal Ti content for grain refinement, i.e. < 0.02 wt%, although a better corrosion resistance can be obtained at higher Ti contents. The larger grain size results in crack sensitivity during DC casting. A macroscopic etching technique was developed, based on a NaOH solution, and used in inclusion assessment along DC cast billets. Good quantitative data with respect to the size and spatial distribution of inclusions were obtained. The results from studied billets reveal a decreasing number of inclusions going from bottom to top, and the presence of a ring-shaped distribution of a large number of small defects in the beginning of the casting.

The present study shows how composition modifications, i.e. additions of certain amounts of alloying elements to the 3xxx and 6xxx Al alloys, significantly change the microstructures of the materials, its castability, and consequently its mechanical properties

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. v, 41 p.
Keyword
Aluminium wrought alloys, AA3xxx and 6xxx, Direct Chill Casting, Unidirectional Solidification, Bridgman technique, Process parameters, Microstructure, Composition modification, Thermal analysis, Inclusions, Metallographical investigations
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-4205 (URN)91-7178-496-9 (ISBN)
Public defence
2006-12-14, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:15
Opponent
Supervisors
Note
QC 20100901Available from: 2006-12-05 Created: 2006-12-05 Last updated: 2010-09-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXD-4HK5SSP-2&_user=4478132&_coverDate=12%2F15%2F2005&_alid=501799499&_rdoc=1&_fmt=summary&_orig=search&_cdi=5588&_sort=d&_docanchor=&view=c&_acct=C000034958&_version=1&_urlVersion=0&_userid=4478132&md5=4f3a47bea8472d8e3fd7d85431529deb

Search in DiVA

By author/editor
Jaradeh, MajedCarlberg, Torbjörn
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 131 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf