Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inter-layer communication for faster restoration in a 10Gigabit Ethernet based network
KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0001-6704-6554
2006 (English)In: Reliability of Optical Fiber Components, Devices, Systems, and Networks III, 2006, Vol. 6193Conference paper, Published paper (Refereed)
Abstract [en]

The restoration time in high capacity optical networks has to be kept as short as possible in order to avoid a huge loss of data. This paper discusses several methods to improve restoration time in optical networks and we propose mechanisms of implementing such inter-layer communication in order to decrease restoration time for a 10Gigabit Ethernet based network.

Place, publisher, year, edition, pages
2006. Vol. 6193
Series
PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), ISSN 0277-786X ; 6193
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-6533DOI: 10.1117/12.662996ISI: 000239004500037Scopus ID: 2-s2.0-33746757668ISBN: 0-8194-6249-7 (print)OAI: oai:DiVA.org:kth-6533DiVA: diva2:11269
Conference
Conference on Reliability of Optical Fiber Components, Devices, Systems, and Networks III
Note
QC 20100630Available from: 2006-12-07 Created: 2006-12-07 Last updated: 2011-10-07Bibliographically approved
In thesis
1. Hybrid Routing in Next Generation IP Networks: QoS Routing Mechanisms and Network Control Strategies
Open this publication in new window or tab >>Hybrid Routing in Next Generation IP Networks: QoS Routing Mechanisms and Network Control Strategies
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Communication networks have evolved from circuit-switched and hop-by-hop routed systems into hybrid data/optical networks using the Internet as a common backbone carrying narrow- and broad-band traffic offered by a multitude of access networks. This data/optical backbone is built around a multi-technology/multi-protocol routing architecture which runs the IP protocols in a collapsed IP stack where ATM and SONET/SDH have been replaced by the suite of Generalized Multiprotocol Label Switching (GMPLS) protocols. A further evolution referred to as ``IP over Photons'' or ``All IP - All Optical'' is expected where ``redundant intermediate layers'' will be eliminated to run IP directly on top of optical cross-connects (OXCs) with the expectation of achieving savings on operation expenditures (OPEX) and capital expenditures (CAPEX). ``IP over Photons'' has been stalled by the immaturity in the control and data plane technologies leading to complex and time-consuming manual network planning and configurations which require a group of ``layer experts'' to operate and maintain a hybrid data/optical network.

By making the status of each link and node of a data/optical network visible to a common control, GMPLS protocols have opened the way for automated operation and management allowing the different layers of an IP stack to be managed by a single network operator. GMPLS protocols provide the potential to make more efficient use of the IP backbone by having network management techniques such as Traffic Engineering (TE) and Network Engineering (NE), once the preserve of telecommunications, to be reinvented and deployed to effect different Quality of Service (QoS) requirements in the IP networks. NE moves bandwidth to where the traffic is offered to the network while TE moves traffic to where the bandwidth is available to achieve QoS agreements between the current and expected traffic and the available resources. However,several issues need to be resolved before TE and NE be effectively deployed in emerging and next generation IP networks. These include (1) the identification of QoS requirements of the different network layer interfaces of the emerging and next generation IP stack (2) the mapping of these QoS requirements into QoS routing mechanisms and network control strategies and (3) the deployment of these mechanisms and strategies within and beyond an Internet domain's boundaries to maximize the engineering and economic efficiency.

Building upon different frameworks and research fields, this thesis revisits the issue of Traffic and Network Engineering (TE and NE) to present and evaluate the performance of different QoS routing mechanisms and network control strategies when deployed at different network layer interfaces of a hybrid data/optical network where an IP over MPLS network is layered above an MP λS/Fiber infrastructure. These include mechanisms and strategies to be deployed at the IP/MPLS, MPLS/MP λS and MP λS/Fiber network layer interfaces. The main contributions of this thesis are threefold. First we propose and compare the performance of hybrid routing approaches to be deployed in IP/MPLS networks by combining connectionless routing mechanisms used by classical IGP protocols and the connection oriented routing approach borrowed from MPLS. Second, we present QoS routing mechanisms and network control strategies to be deployed at the MPLS/MP λS network layer interface with a focus on contention-aware routing and inter-layer visibility to improve multi-layer optimality and resilience. Finally, we build upon fiber transmission characteristics to propose QoS routing mechanisms where the routing in the MPLS and MP λS layers is conducted by Photonic characteristics of the fiber such as the availability of the physical link and its failure risk group probability.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006
Series
Trita-ICT-ECS AVH, ISSN 1653-6363 ; 06:08
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-4213 (URN)
Public defence
2006-12-12, Aula, KTH-Forum, Isafjordsgatan 39, Kista, 13:00
Opponent
Supervisors
Note
QC 20100630Available from: 2006-12-07 Created: 2006-12-07 Last updated: 2010-06-30Bibliographically approved
2. Interdomain Traffic Engineering and Faster Restoration in Optical Networks
Open this publication in new window or tab >>Interdomain Traffic Engineering and Faster Restoration in Optical Networks
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Internet traffic has surpassed voice traffic and is dominating in transmission networks. The Internet Protocol (IP) is now being used to encapsulate various kinds of services. The new services have different requirements than the initial type of traffic that was carried by the Internet network and IP. Interactive services such as voice and video require paths than can guarantee some bandwidth level, minimum delay and jitter. In addition service providers need to be able to improve the performance of their networks by having an ability to steer the traffic along the less congested links or paths, thus balancing the load in a uniform way as a mechanism to provide differentiated service quality.

This needs to be provided not only within their domains but also along paths that might traverse more than one domain. For this to be possible changes have been proposed and some are being applied to provide quality of service (QoS) and traffic engineering (TE) within and between domains.

Because data networks now carry critical data and there are new technologies that enable providers to carry huge amount of traffic, it is important to have mechanisms to safeguard against failures that can render the network unavailable.

In this thesis we propose and develop mechanisms to enable interdomain traffic engineering as well as to speed up the restoration time in optical transport networks. We propose a mechanism, called abstracted path information, that enable peering entities to exchange just enough information to engage in QoS and TE operations without divulging all the information about the internal design of the network. We also extend BGP to carry the abstracted information. Our simulations show that BGP could still deliver the same performance with the abstracted information.

In this thesis we also develop a method of classifying failures of links or paths. To improve the restoration time we propose that common failures be classified and assigned error type numbers and we develop a mechanism for interlayer communication and faster processing of signalling messages that are used to carry notification signals. Additionally we develop a mechanism of exchanging the failure information between layers through the use of service primitives; that way we can speed up the restoration process. Finally we simulate the developed mechanism for a 24 node Pan American optical transport network.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. 188 p.
Series
TRITA-ICT-ECS AVH, ISSN 1653-6363 ; 1653-6363
Keyword
Interdomain Routing, Network Recovery, Restoration in Optical Networks
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-4220 (URN)91-7178-501-9 (ISBN)
Public defence
2006-12-12, Aula, Forum, Isafjordsgatan 39, Kista, 09:00
Opponent
Supervisors
Note

QC 20100913

Available from: 2006-12-11 Created: 2006-12-11 Last updated: 2015-06-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=PSISDG&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=PSISDG&possible1=muchanga&possible1zone=author&bool1=and&possible2=inter-layer+communication&possible2zone=multi&fromyear=2006&toyear=2006&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=1&page=1&chapter=0

Authority records BETA

Wosinska, Lena

Search in DiVA

By author/editor
Muchanga, AméricoBagula, Antoine BWosinska, Lena
By organisation
Microelectronics and Information Technology, IMIT
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf