Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detailed spectroscopy of Bi-195
Show others and affiliations
2017 (English)In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 96, no 1, article id 014301Article in journal (Refereed) Published
Abstract [en]

An experiment focused on the study of shape coexistence and new high-spin structures in Bi-195 has been performed. The nucleus is in a transitional region of the bismuth isotope chain. A large number of new states have been found, resulting in a significant extension of the previously known level scheme. Several new collective structures have been identified. A strongly coupled rotational band built upon the 13/2(+) isomeric state was extended up to I-pi = (49/2(+)) and an energy of 5706 keV. The I-pi = 31/2(+) member of the pi i(13/2) band was also found to feed a new long-lived isomeric state with an excitation energy of 2616 keV and a spin and parity of I-pi = 29/2(+). The half-life of the 29/2+ isomeric state was determined to be 1.49(1) mu s. It decays via the emission of 457-keV E2 and 236-keV E1 transitions, respectively. A low-energy 46-keV E2 transition has been identified to depopulate the (29/(2-)) isomeric state, with a measured half-life of T-1/2 = 614(5) ns. This transition allows the excitation energy of the isomeric state to be determined as 2381 keV. The feeding patterns of both 29/2(+) and (29/2(-)) isomeric states have also been described. This is the first time collective structures have also been observed up to high spins and excitation energies in the neutron-deficient Bi-195 nucleus. Evidence for the manifestation of shape coexistence in Bi-195 is also discussed.

Place, publisher, year, edition, pages
American Physical Society, 2017. Vol. 96, no 1, article id 014301
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-211344DOI: 10.1103/PhysRevC.96.014301ISI: 000405202900002Scopus ID: 2-s2.0-85022222268OAI: oai:DiVA.org:kth-211344DiVA, id: diva2:1129089
Note

QC 20170801

Available from: 2017-08-01 Created: 2017-08-01 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jakobsson, Ulrika
By organisation
Physics
In the same journal
Physical Review C: Covering Nuclear Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf