Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Divulging the Hidden Capacity and Sodiation Kinetics of NaxC6Cl4O2: A High Voltage Organic Cathode for Sodium Rechargeable Batteries
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Uppsala University, Sweden. (Enheten egenskaper)
2017 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 26, p. 14027-14036Article in journal (Refereed) Published
Abstract [en]

In the current emerging sustainable organic battery field, quinones are seen as one of the prime candidates for application in rechargeable battery electrodes. Recently, C6Cl4O2, a modified quinone, has been proposed as a high voltage organic cathode. However, the sodium insertion mechanism behind the cell reaction remained unclear due to the nescience of the right crystal structure. Here, the framework of the density functional theory (DFT) together with an evolutionary algorithm was employed to elucidate the crystal structures of the compounds NaxC6Cl4O2 (x = 0.5, 1.0, 1.5 and 2). Along with the usefulness of PBE functional to reflect the experimental potential, also the importance of the hybrid functional to divulge the hidden theoretical capacity is evaluated. We showed that the experimentally observed lower specific capacity is a result of the great stabilization of the intermediate phase Na1.5C6Cl4O2. The calculated activation barriers for the ionic hops, are 0.68, 0.40, and 0.31 eV, respectively, for NaC6Cl4O2, Na1.5C6Cl4O2, and Na2C6Cl4O2. These results indicate that the kinetic process must not be a limiting factor upon Na insertion. Finally, the correct prediction of the specific capacity has confirmed that the theoretical strategy used, employing evolutionary simulations together with the hybrid functional framework, can rightly model the thermodynamic process in organic electrode compounds.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 121, no 26, p. 14027-14036
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-211341DOI: 10.1021/acs.jpcc.7b03621ISI: 000405252800007Scopus ID: 2-s2.0-85023200176OAI: oai:DiVA.org:kth-211341DiVA, id: diva2:1129095
Funder
Swedish Energy AgencySwedish Research CouncilStandUp
Note

QC 20170801

Available from: 2017-08-01 Created: 2017-08-01 Last updated: 2017-08-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ahujati, Rajeev
By organisation
Applied Material Physics
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf