Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Show others and affiliations
2017 (English)In: Physical Review Accelerators And Beams, ISSN 2469-9888, Vol. 20, no 7, article id 072801Article in journal (Refereed) Published
Abstract [en]

Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called spin tune mapping, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 using polarized deuterons stored in the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8 mu rad.

Place, publisher, year, edition, pages
American Physical Society, 2017. Vol. 20, no 7, article id 072801
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-211339DOI: 10.1103/PhysRevAccelBeams.20.072801ISI: 000405208500001OAI: oai:DiVA.org:kth-211339DiVA, id: diva2:1129102
Funder
EU, European Research Council, 694340
Note

QC 20170801

Available from: 2017-08-01 Created: 2017-08-01 Last updated: 2017-08-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Thörngren Engblom, Pia
By organisation
Nuclear Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf