Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exergy analysis on turbocharger radial turbine with heat transfer
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).ORCID iD: 0000-0001-7330-6965
2017 (English)In: 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017, KTH Royal Institute of Technology, 2017Conference paper, Published paper (Refereed)
Abstract [en]

Inconsistent results about heat transfer effects on performance and poor understanding of the aerothermodynamics loss mechanisms related to heat transfer in turbocharger turbine motivated this study. This study aimed to investigate the sensitivity of performance to heat loss and to quantify loss mechanisms associated with heat transfer in a turbine by using exergy analysis. A hybrid simulation methodology, i.e. Detached Eddy Simulation (DES) was used to compute the three-dimensional flow field of a turbine operating under hot gas stand continuous flow condition. Principal findings of this study were 1) Pressure ratio is less sensitive to heat loss as compared to turbine power, 2) Turbine power drop due to heat loss is relatively insignificant as compared to the exergy lost by heat transport and exergy destroyed by thermal irreversibilities, and 3) Assuming the most ideal isentropic gas expansion, more than 80% of the inflow exergy is unutilized in the investigated turbine system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017.
Keywords [en]
Des, Efficiency, Exergy, Heat transfer, Turbine, Turbocharger
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-211876Scopus ID: 2-s2.0-85043439739OAI: oai:DiVA.org:kth-211876DiVA, id: diva2:1131659
Conference
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017, Quality Hotel Globe, Stockholm, Sweden, 3 April 2017 through 7 April 2017
Note

QC 20170815

Available from: 2017-08-15 Created: 2017-08-15 Last updated: 2018-05-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Search in DiVA

By author/editor
Lim, Shyang MawDahlkild, AndersMihaescu, Mihai
By organisation
MechanicsCompetence Center for Gas Exchange (CCGEx)
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 108 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf