Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards prioritizing flexibility in the design and construction of concentrating solar power plants
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2017 (English)In: SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems, American Institute of Physics (AIP), 2017, article id 060005Conference paper (Refereed)
Abstract [en]

In the operation and maintenance of concentrating solar power plants, high operational flexibility is required in order to withstand the variability from the inherent solar fluctuations. However, during the development phases of a solar thermal plant, this important objective is overlooked as a relevant factor for cost reduction in the long term. This paper will show the value of including flexibility aspects in the design of a concentrating solar power plant by breaking down their potential favorable impact on the levelized cost of electricity (LCOE) calculations. For this, three scenarios to include flexibility as a design objective are analyzed and their potential impact on the LCOE is quantified. The scenarios were modeled and analyzed using a techno-economic model of a direct steam generation solar tower power plant. Sensitivity studies were carried out for each scenario, in which the level of improvement due to each scenario was compared to the base case. Then, the results obtained for each scenario were compared for similar levels of LCOE and flexibility improvements. In general, all scenarios were beneficial on power plant performance. Improvements on the LCOE in the range of 3-4% were obtained with different distributions of costs and annual electricity for each case.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2017. article id 060005
Series
AIP Conference Proceedings, ISSN 0094-243X ; 1850
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-212481DOI: 10.1063/1.4984413Scopus ID: 2-s2.0-85023623320ISBN: 9780735415225 (print)OAI: oai:DiVA.org:kth-212481DiVA, id: diva2:1135368
Conference
22nd International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2016, Jumeirah Hotel at Etihad Towers, Abu Dhabi, United Arab Emirates, 11 October 2016 through 14 October 2016
Note

QC 20170823

Available from: 2017-08-23 Created: 2017-08-23 Last updated: 2017-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Topel, MonikaLundqvist, MårtenLaumert, Björn
By organisation
Heat and Power TechnologyEnergy Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf