CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt171",{id:"formSmash:upper:j_idt171",widgetVar:"widget_formSmash_upper_j_idt171",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt173_j_idt175",{id:"formSmash:upper:j_idt173:j_idt175",widgetVar:"widget_formSmash_upper_j_idt173_j_idt175",target:"formSmash:upper:j_idt173:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Recursive inverse factorizationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 128, no 10, 104105- p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 128, no 10, 104105- p.
##### Keyword [en]

Hermitian matrices, matrix decomposition, recursion method, sparse matrices, congruence transformation, inverse factorization, iterative refinement
##### National Category

Theoretical Chemistry
##### Identifiers

URN: urn:nbn:se:kth:diva-9446DOI: 10.1063/1.2884921ISI: 000254025300007Scopus ID: 2-s2.0-40849134177OAI: oai:DiVA.org:kth-9446DiVA: diva2:114025
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt481",{id:"formSmash:j_idt481",widgetVar:"widget_formSmash_j_idt481",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt487",{id:"formSmash:j_idt487",widgetVar:"widget_formSmash_j_idt487",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt493",{id:"formSmash:j_idt493",widgetVar:"widget_formSmash_j_idt493",multiple:true});
##### Note

QC 20100908Available from: 2008-11-04 Created: 2008-11-04 Last updated: 2017-12-14Bibliographically approved
##### In thesis

A^{ }recursive algorithm for the inverse factorization *S*^{−1}=*Z**Z*^{*} of Hermitian positive^{ }definite matrices *S* is proposed. The inverse factorization is based^{ }on iterative refinement [A.M.N. Niklasson, Phys. Rev. B **70**, 193102^{ }(2004)] combined with a recursive decomposition of *S*. As the^{ }computational kernel is matrix-matrix multiplication, the algorithm can be parallelized^{ }and the computational effort increases linearly with system size for^{ }systems with sufficiently sparse matrices. Recent advances in network theory^{ }are used to find appropriate recursive decompositions. We show that^{ }optimization of the so-called network modularity results in an improved^{ }partitioning compared to other approaches. In particular, when the recursive^{ }inverse factorization is applied to overlap matrices of irregularly structured^{ }three-dimensional molecules.

1. Matrix Algebra for Quantum Chemistry$(function(){PrimeFaces.cw("OverlayPanel","overlay114034",{id:"formSmash:j_idt787:0:j_idt792",widgetVar:"overlay114034",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1285",{id:"formSmash:j_idt1285",widgetVar:"widget_formSmash_j_idt1285",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1352",{id:"formSmash:lower:j_idt1352",widgetVar:"widget_formSmash_lower_j_idt1352",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1353_j_idt1355",{id:"formSmash:lower:j_idt1353:j_idt1355",widgetVar:"widget_formSmash_lower_j_idt1353_j_idt1355",target:"formSmash:lower:j_idt1353:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});