Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Turbulent Chiral Magnetic Cascade in the Early Universe
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Laboratory for Atmospheric and Space Physics, University of Colorado; JILA and Department of Astrophysical and Planetary Sciences, University of Colorado Department of Mechanical Engineering, Ben-Gurion University of the Negev.ORCID iD: 0000-0002-7304-021X
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Laboratory for Atmospheric and Space Physics, University of Colorado, Department of Mechanical Engineering, Ben-Gurion University of the Negev.
Show others and affiliations
2017 (English)In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 845, no 2, article id L21Article in journal (Refereed) Published
Abstract [en]

The presence of asymmetry between fermions of opposite handedness in plasmas of relativistic particles can lead to exponential growth of a helical magnetic field via a small-scale chiral dynamo instability known as the chiral magnetic effect. Here, we show, using dimensional arguments and numerical simulations, that this process produces through the Lorentz force chiral magnetically driven turbulence. A k(-2) magnetic energy spectrum emerges via inverse transfer over a certain range of wavenumbers k. The total chirality (magnetic helicity plus normalized chiral chemical potential) is conserved in this system. Therefore, as the helical magnetic field grows, most of the total chirality gets transferred into magnetic helicity until the chiral magnetic effect terminates. Quantitative results for height, slope, and extent of the spectrum are obtained. Consequences of this effect for cosmic magnetic fields are discussed.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2017. Vol. 845, no 2, article id L21
Keywords [en]
dynamo, early universe, magnetic fields, magnetohydrodynamics (MHD), turbulence
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-214330DOI: 10.3847/2041-8213/aa855dISI: 000408251700001Scopus ID: 2-s2.0-85028448126OAI: oai:DiVA.org:kth-214330DiVA, id: diva2:1140870
Note

QC 20170913

Available from: 2017-09-13 Created: 2017-09-13 Last updated: 2017-09-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Brandenburg, Axel

Search in DiVA

By author/editor
Brandenburg, AxelSchober, JenniferRogachevskii, IgorKleeorin, Nathan
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Astrophysical Journal Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf