Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Periodicity in Frequency Responses of Networks From Conducted EMI
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.ORCID iD: 0000-0003-4740-1832
2017 (English)In: IEEE transactions on electromagnetic compatibility (Print), ISSN 0018-9375, E-ISSN 1558-187X, Vol. 59, no 6, p. 1897-1905Article in journal (Refereed) Published
Abstract [en]

In this paper, we consider different types of networks, and investigate the characteristics of the frequency responses of loads, which are distributed in the networks. Without loss of generality, both frequency-independent and frequency-dependent loads are discussed, respectively. Beginning with a transmission-line (TL) network with frequency-independent loads, via the TL theory and Baum-Liu-Tesche equation, we demonstrate that the frequency responses are periodic in the frequency domain, where the periodicity is derived and verified. Subsequently, our study is extended to the complex networks that consist of multiple junctions and branches. By using the statistical method, we generate random loads with different attributes, i.e., resistive, inductive, or capacitive, and mainly study the effect of the number of branches and junctions on the frequency response of targeted load in various networks. From the perspective of protections for the targeted load in networks, results indicate that, for lossless and good dielectric (i.e., low-loss) media, it is crucial to consider the frequency responses at the critical frequencies in a periodical manner, rather than at a single frequency. Furthermore, it is worth noting that, the frequency response of targeted load behaves differently when varying the attributes of other loads in the network. The variation of network topology, i.e., increasing the number of junctions or branches, also influences the frequency response.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2017. Vol. 59, no 6, p. 1897-1905
Keywords [en]
Frequency-dependent load impedance, frequency response, intentional electromagnetic interference (IEMI), network
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-214298DOI: 10.1109/TEMC.2017.2689924ISI: 000408335300030Scopus ID: 2-s2.0-85018622641OAI: oai:DiVA.org:kth-214298DiVA, id: diva2:1140914
Note

QC 20170913

Available from: 2017-09-13 Created: 2017-09-13 Last updated: 2017-09-21Bibliographically approved
In thesis
1. Impact Evaluation of Intentional Electromagnetic Interference (IEMI) on Targeted Loads in Complex Networks Using Analytical Investigations
Open this publication in new window or tab >>Impact Evaluation of Intentional Electromagnetic Interference (IEMI) on Targeted Loads in Complex Networks Using Analytical Investigations
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With the proliferation of various electronic and electrical devices, IEMI has become a critical issue that may severely threaten the modern society. For practical protection considerations, it is crucial to comprehensively evaluate the potential damages resulted by IEMI. The major objective of this thesis is to study the impacts of IEMI on the targeted load in complex networks. More exactly, with respect to certain IEMI, the characteristics of the resulting frequency response on the targeted load are studied, and the effects of network configurations, i.e., the attribute of load impedances, lengths of lines, parameters of disturbance source, location of source and network structures, are also investigated.

First, we developed a novel efficient method to solve the frequency response, which is applicable for arbitrary networks. The key idea is decomposing the whole complex network into multiple equivalent units, and performing a recursive approach to efficiently compute the frequency response without losing the precision.

Subsequently, we studied the periodicity of the load response in the frequency domain. Starting with a simple network, we derived and verified the period of the frequency response. During the study, the periodicity with respect to load and media was discussed.

Furthermore, with respect to five important time-domain norms, i.e., time-domain peak, total signal energy, peak signal power, peak time rate of change, and peak time integral of the pulse, we considered a parameterized ultra-wideband (UWB) transient as the disturbance source, and thoroughly studied its impacts on the targeted load regarding network configurations, which include load impedance, the lengths of lines and parameters of the UWB transient.

Finally, we adopted a statistical approach to investigate the receptivity at the targeted load in a network. Via complementary cumulative distribution function, the stochastic IEMI and its effects on the targeted load were studied. Moreover, by statistical approach, we also investigated how the network structure affects the frequency response of the targeted load. The results give suggestions on how to protect the targeted load by varying network structures.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. p. 63
Series
TRITA-EE, ISSN 1653-5146 ; 2017:111
Keywords
Intentional Electromagnetic Interference, Networks, BLT, Transmission Line
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-214799 (URN)978-91-7729-510-5 (ISBN)
Public defence
2017-10-12, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170922

Available from: 2017-09-22 Created: 2017-09-21 Last updated: 2017-09-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Månsson, Daniel

Search in DiVA

By author/editor
Li, BingMånsson, Daniel
By organisation
Electromagnetic Engineering
In the same journal
IEEE transactions on electromagnetic compatibility (Print)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf