Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of tuned-mass system on railway catenary to improve dynamic performance
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. (SDB)
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
NTNU Norwegian University of Science and Technology.
(English)In: Article in journal (Other academic) Submitted
Abstract [en]

Finding a simple and practical method to improve the dynamic behaviour of a specific structure is always desirable in civil and mechanical engineering. The railway catenary system is the overhead power line above the track, interacting with the train-based pantograph to transfer electric power. Due to vertical stiffness variation and a propagating wave along the catenary, the fluctuation of the contact force becomes significant with operational speed increasing. Therefore, this has become one of the key factors which limits the operational speed and service life of key components. Wire misalignment, structural errors and uneven mass distribution of the catenary can further deteriorate the contact stability. In order to achieve a higher speed on existing lines, the catenary needs large-scale modification implying long out-off-service time. From the designing aspect, all components directly fixed to the catenary, like clamps, steady arms and other fittings, are made as light and small as possible to minimize disturbances. However, in other engineering applications, some well-designed additional mass systems are adopted aiming to improve their dynamic performance. In order to take advantage of these unavoidable masses on the catenary, an investigation on lumped-mass distribution in single-pantograph and multi-pantograph operations is performed with help of a 3D pantograph-catenary finite element (FE) model. The results show that a rightly-tuned mass, here the implementing location and the elasticity of its connection, can positively change the dynamic performance without implementing large-scale modification to the existing system. Through a brief discussion on the mechanism of this positive effect, this paper proposes that applying some artificial tuned-mass system can be a possible method to overcome unfavourable working conditions or even allow speed increase on existing lines.

Keyword [en]
dynamic control, pantograph-catenary system, mass distribution, tuned-mass system, speed increase, multi-pantograph operation
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
URN: urn:nbn:se:kth:diva-214460OAI: oai:DiVA.org:kth-214460DiVA: diva2:1141206
Note

QC 20170915

Available from: 2017-09-14 Created: 2017-09-14 Last updated: 2017-10-09Bibliographically approved
In thesis
1. Measures to Enhance the Dynamic Performance of Railway Catenaries
Open this publication in new window or tab >>Measures to Enhance the Dynamic Performance of Railway Catenaries
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The pantograph-catenary system is used in railways to transfer electric power from infrastructure to trainset. As the pantograph slides against the catenary, the contact between the two surfaces is not stable due to stiffness variation, propagating wave and other environmental perturbation, especially at high speeds or in multi-pantograph operation. Heavy oscillation can result in poor power-transmission quality, electromagnetic interference, severe wear or even structural damage. So the pantograph-catenary dynamics has become one of the key issues which limits the operational speed and determines the maintenance cost. There are many types of catenary systems in Sweden, which are relatively soft and sensitive compared with the systems in other countries. They work well at low operational speed and have strict limitations to multi-pantograph operation. It is possible to achieve an operational speed of 350 km/h on newly-built high-speed lines, but there is still a large demand for higher operational speed and more capacity on the existing lines.

    Many researchers and engineers have made progress to improve its dynamic performance. From the research aspect, many numerical models have been built up to demonstrate the dynamics of the pantograph-catenary system and to unveil the key influencing factors. There have been many applications developed in recent years. Regarding the catenary, high-tensile loads on the catenary and low-stiffness-variation designs are widely used to improve the dynamic performance. Regarding the pantograph, aerodynamic-friendly designs and active-control technique contribute to the development of high-speed pantograph. But all these methods need not only large investment but long out-of-service. Considering the large scale and heavy service duty of the existing lines, it becomes almost impossible to completely upgrade the existing pantograph-catenary systems. So it is necessary to find practical and efficient methods to exploit the potentials of the existing systems to enhance their dynamic performances.

    This thesis investigates the dynamic behaviour of the Swedish pantograph-catenary systems and proposes methods for better usage. A numerical study on multi-pantograph operation is performed and the relationships between dynamic performance and some key parameters is established. By studying the multi-pantograph operation at short spacing distance, a method to use the leading pantograph as auxiliary pantograph is proposed to increase the operational speed on the soft catenary system. To ensure operational safety in abnormal conditions, numerical studies on pantograph raising/lowering processes and in catenary overlap sections are performed. By studying the influence of the lumped-mass on the dynamic performance, it shows that it is even possible to implement some artificial tuned-masses on the catenary for dynamic optimization.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 42 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2017:60
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-214464 (URN)978-91-7729-524-2 (ISBN)
Public defence
2017-10-18, F3, Lindstedtsvägen 26, stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170915

Available from: 2017-09-15 Created: 2017-09-14 Last updated: 2017-09-15Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Liu, ZhendongStichel, Sebastian
By organisation
Rail Vehicles
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf