Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest stand.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.ORCID iD: 0000-0002-0926-3304
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
Show others and affiliations
2008 (English)In: Ecological Modelling, ISSN 0304-3800, Vol. 213, no 3-4, 331-344 p.Article in journal (Other academic) Published
Abstract [en]

This study quantified major fluxes of carbon (C), heat and water, including uncertainty estimates, in a boreal forest in northern Sweden, using a process-based model (Coup-Model) and Bayesian calibration methodology. Coupled C, water and heat fluxes were described together with estimated uncertainties for all major components of the simulated C budget. Simulated mean gross primary production was 641 +/- 74 gC m(-2) yr(-1), total ecosystem respiration 570 +/- 55 gC m(-2)yr(-1) and net ecosystem productivity 71 +/- 37gCm(-2)yr(-1). Most high-resolution measurements were well described but some interesting exceptions arose between model and measurements, e.g. latent heat flux was overestimated and field layer (understory) root litter production underestimated. Bayesian calibration reduced the assumed prior parameter ranges in 30 of 33 parameters, thus reducing the uncertainty in the estimates. There was a high degree of couplings between different sub-models and processes in the model, highlighting the importance of considering parameters not as singularities but in clusters

Place, publisher, year, edition, pages
2008. Vol. 213, no 3-4, 331-344 p.
Keyword [en]
carbon budget, CoupModel, Markov chain Monte Carlo simulation, process-based model, uncertainty estimate
National Category
Agricultural Sciences
Identifiers
URN: urn:nbn:se:kth:diva-6651DOI: 10.1016/j.ecolmodel.2008.01.001ISI: 000255624900006Scopus ID: 2-s2.0-41149133225OAI: oai:DiVA.org:kth-6651DiVA: diva2:11417
Note
Uppdaterad från manuskript till artikel: 20100922. QC 20100922 Available from: 2006-12-15 Created: 2006-12-15 Last updated: 2010-09-22Bibliographically approved
In thesis
1. Carbon dynamics in spruce forest ecosystems - modelling pools and trends for Swedish conditions
Open this publication in new window or tab >>Carbon dynamics in spruce forest ecosystems - modelling pools and trends for Swedish conditions
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Carbon (C) pools and fluxes in northern hemisphere forest ecosystems are attracting increasing attention concerning predicted climate change. This thesis studied C fluxes, particularly soil C dynamics, in spruce forest ecosystems in relation to interactions between physical/biological processes using a process-based ecosystem model (CoupModel) with data for Swedish conditions. The model successfully described general patterns of C and N dynamics in managed spruce forest ecosystems with both tree and field layers. Using regional soil and plant data, the change in current soil C pools was -3 g C m-2 yr-1 in northern Sweden and +24 g C m-2 yr-1 in southern Sweden. Simulated climate change scenarios resulted in increased inflows of 16-38 g C m-2 yr-1 to forest ecosystems throughout Sweden, with the highest increase in the south and the lowest in the north. Along a north-south transect, this increased C sequestration mainly related to increased tree growth, as there were only minor decreases in soil C pools. Measurements at one northern site during 2001-2002 indicated large soil C losses (-96 g C m-2 yr-1), which the model successfully described. However, the discrepancy between these large losses and substantially smaller losses obtained in regional simulations was not explained. A simulation based on Bayesian calibration successfully reproduced measured C, water and energy fluxes, with estimated uncertainties for major components of the simulated C budget. Site-specific measurements indicated a large contribution from field layer fine roots to total litter production, particularly in northern Sweden. Mean annual tree litter production was 66% higher at the most southerly site (240 g C m-2 yr-1 compared with 145 g C m-2 yr-1 in the north), but when field and bottom layers were included the difference decreased to 16% (total litter production 276 g C m-2 yr-1 and 239 g C m-2 yr-1 respectively). Regional simulations showed that decomposition rate for the stable soil C fraction was three times higher in northern regions compared with southern, providing a possible explanation why soil C pools in southern Sweden are roughly twice as large as those in the north.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. viii, 25 p.
Series
Trita-LWR. PHD, ISSN 1650-8602 ; 1029
Keyword
boreal, climate, CoupModel, net ecosystem production, nitrogen, process-based model, soil carbon
National Category
Natural Sciences
Identifiers
urn:nbn:se:kth:diva-4240 (URN)978-91-7178-544-2 (ISBN)
Public defence
2006-12-19, D3, Lindstedtsvägen 5, KTH, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100922Available from: 2006-12-15 Created: 2006-12-15 Last updated: 2010-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Svensson, Magnus

Search in DiVA

By author/editor
Svensson, MagnusJansson, Per-ErikGustafsson, DavidBerggren Kleja, Dan
By organisation
Land and Water Resources Engineering
In the same journal
Ecological Modelling
Agricultural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf