Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deuterium isotope effects on the interaction between hyperbranched polyethylene imine and an anionic surfactant
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
Department of Colloid Chemistry, Eötvös Loránd University, Budapest.
Department of Colloid Chemistry, Eötvös Loránd University, Budapest.
Department of Colloid Chemistry, Eötvös Loránd University, Budapest.
Show others and affiliations
2005 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 109, no 33, 16196-16202 p.Article in journal (Refereed) Published
Abstract [en]

Solvent isotope effects on the interaction between the hyperbranched cationic polyelectrolyte, polyethylene imine (PEI), and the anionic surfactant sodium dodecyl sulfate (SDS) were investigated using potentiometric titration and eletrophoretic mobility measurements. In the basic pH range, a significantly higher fraction of the amine groups was found to be protonated when the PEI was dissolved in D2O compared to H2O at the same pH/pD. The difference in polymer charge in the two solvents decreases gradually with decreasing pH, and it completely diminishes at around pH = 4. Electrophoretic mobility measurements of PEI/SDS complexes at different pH values correlated very well with these observations. At pH/pD approximate to 9 a much higher mobility of the PEI/SDS complexes was found in D2O than in H2O at low surfactant concentrations, and the charge neutralization point shifted to a considerably larger surfactant concentration in heavy water. These results can be explained by the significantly higher charge density of the PEI in D2O compared to H2O. However, at the natural pH/pD as well as at pH = 4 and pD = 4 conditions the PEI molecules have roughly equal charge densities, which result in very similar charged characteristics (mobilities) of the PEI/SDS complexes as well as the same charge neutralization SDS concentration. It can be concluded that extreme care must be taken in the general analysis of those experiments in which weak polyelectrolyte/surfactant aggregates are investigated in heavy water, and then these observations are correlated with structures of the same system in water.

Place, publisher, year, edition, pages
2005. Vol. 109, no 33, 16196-16202 p.
Keyword [en]
Complexation, Deuterium, Electrophoresis, Heavy water, Negative ions, Organic polymers, pH effects, Polyelectrolytes, Sodium compounds, Solvents, Surface active agents, Titration, Anionic surfactants, Polyethylene imines (PEI), Sodium dodecyl sulfate (SDS), Solvent isotope effects, Molecular dynamics
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-6675DOI: 10.1021/jp052222vISI: 000231426000074Scopus ID: 2-s2.0-24944481597OAI: oai:DiVA.org:kth-6675DiVA: diva2:11451
Note
QC 20100901Available from: 2005-09-22 Created: 2005-09-22 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Self assembly of surfactants and polyelectrolytes in solution and at interfaces
Open this publication in new window or tab >>Self assembly of surfactants and polyelectrolytes in solution and at interfaces
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis focuses on the study of the interactions between polyelectrolytes and surfactants in aqueous solutions and at interfaces, as well as on the structural changes these molecules undergo due to that interaction. Small–angle neutron scattering, dynamic, and static light scattering were the main techniques used to investigate the interactions in bulk. The first type of polymer studied was a negatively charge glycoprotein (mucin); its interactions with ionic sodium alkyl sulfate surfactants and nonionic surfactants were determined. This system is of great relevance for several applications such as oral care and pharmaceutical products, since mucin is the main component of the mucus layer that protects the epithelial surfaces (e.g. oral tissues). Sodium dodecyl sulfate (SDS) on the other hand, has been used as foaming agent in tooth pastes for a very long time. In this work it is seen how SDS is very effective in dissolving the large aggregates mucin forms in solution, as well as in removing preadsorbed mucin layers from different surfaces. On the other hand, the nonionic surfactant n-dodecyl β-D-maltopyranoside (C12-mal), does not affect significantly the mucin aggregates in solution, neither does it remove mucin effectively from a negatively charge hydrophilic surface (silica). It can be suggested that nonionic surfactants (like the sugar–based C12-mal) could be used to obtain milder oral care products. The second type of systems consisted of positively charged polyelectrolytes and a negatively charged surfactant (SDS). These systems are relevant to a wide variety of applications ranging from mining and cleaning to gene delivery therapy. It was found that the interactions of these polyelectrolytes with SDS depend strongly on the polyelectrolyte structure, charge density and the solvent composition (pH, ionic strength, and so on). Large solvent isotopic effects were found in the interaction of polyethylene imine (PEI) and SDS, as well as on the interactions of this anionic surfactant and the sugar–based n-decyl β-D-glucopyranoside (C10G1). These surfactants mixtures formed similar structures in solutions to the ones formed by some of the polyelectrolytes studied, i.e. ellipsoidal micelles at low electrolyte concentration and stiff rods, at high electrolyte and SDS concentrations.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. 71 p.
Series
Trita-YTK, ISSN 1650-0490 ; 2005:02
Keyword
Surfactant, polyelectrolyte, small–angle neutron scattering, static light scattering, dynamic light scattering, polyelectrolyte–surfactant association, protein
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-425 (URN)91-7178-127-7 (ISBN)
Public defence
2005-09-30, Sal D3, Lindstedtsvägen 5, 09:00
Opponent
Supervisors
Note
QC 20100901Available from: 2005-09-22 Created: 2005-09-22 Last updated: 2010-09-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusPhysical Chemistry B

Search in DiVA

By author/editor
Bastardo Zambrano, Luis AlejandroClaesson, Per Martin
By organisation
Surface Chemistry
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf