Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comprehension of the Effect of a Hydroxyl Group in Ancillary Ligand on Phosphorescent Property for Heteroleptic Ir(III) Complexes: A Computational Study Using Quantitative Prediction
Show others and affiliations
2017 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 15, 8986-8995 p.Article in journal (Refereed) Published
Abstract [en]

A new Ir(III) complex (dfpypya)(2)Ir(pic-OH) (2) is theoretically designed by introduction of a simple hydroxyl group into the ancillary ligand on the basis of (dfpypya)(2)Ir(pic) (1) with the aim to get the high efficiency and stable blue-emitting phosphors, where dfpypya is 3-methyl-6-(2',4'-difluoro-pyridinato)pyridazine, pic is picolinate, and pic OH is 3-hydroxypicolinic acid. The other configuration (dfpypya)(2)Ir(pic OH)' (3) is also investigated to compare with 2. The difference between 2 and 3 is whether the intramolecular hydrogen bond is formed in the (dfpypya)(2)Ir(pic OH). The quantum yield is determined by three different methods including the semiquantitative and quantitative methods. To quantitatively determine the quantum yield is still not an easy task to be completed. This work would provide some useful advices to select the suitable method to reliably evaluate the quantum yield. Complex 2 has larger quantum yield and more stability as compared with 1 and 3. The formation of intramolecular hydrogen bond would become a new method to design new phosphor with the desired properties.

Place, publisher, year, edition, pages
2017. Vol. 56, no 15, 8986-8995 p.
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-214512DOI: 10.1021/acs.inorgchem.7b00946ISI: 000407405500045PubMedID: 28708408Scopus ID: 2-s2.0-85027002330OAI: oai:DiVA.org:kth-214512DiVA: diva2:1145792
Note

QC 20170929

Available from: 2017-09-29 Created: 2017-09-29 Last updated: 2017-09-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Authority records BETA

Li, Junfeng

Search in DiVA

By author/editor
Li, Junfeng
By organisation
Theoretical Chemistry and Biology
In the same journal
Inorganic Chemistry
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf