Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers
KTH, School of Engineering Sciences (SCI), Applied Physics. Cairo University, Egypt.ORCID iD: 0000-0002-1439-8617
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
Show others and affiliations
2017 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 505, p. 682-691Article in journal (Refereed) Published
Abstract [en]

A novel material composite nanofibers (PAN-CNT/TiO2-NH2) based on adsorption of Cr(VI) ions, was applied. Polyacrylonitrile (PAN) and carbon nanotube (CNTs)/titanium dioxide nanoparticles (TiO2) functionalized with amine groups (TiO2-NH2) composite nanofibers have been fabricated by electrospinning. The nanostructures and the formation process mechanism of the obtained PAN-CNT/TiO2-NH2 composite nanofibers are investigated using FTIR, XRD, XPS, SEM, and TEM. The composite nanofibers were used as a novel adsorbent for removing toxic chromium Cr(VI) in aqueous solution. The kinetic study, adsorption isotherm, pH effect, initial concentration, and thermodynamic study were investigated in batch experiments. The composite nanofibers had a positive effect on the absorption of Cr(VI) ions under neutral and acidic conditions, and the saturated adsorption reached the highest when pH was 2. The adsorption equilibrium reached within 30 and 180 min with an initial solution concentration increasing from 10 to 300 mg/L, and the process can be better described using nonlinear pseudo first than nonlinear pseudo second order model and Intra-particle diffusion. Isotherm data fitted well using linear and nonlinear Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherm adsorption model. Thermodynamic study showed that the adsorption process is exothermic. The adsorption capacity can remain up to 80% after 5 times usage, which show good durability performance. The adsorption mechanism was also studied by UV-vis and XPS.

Place, publisher, year, edition, pages
Academic Press, 2017. Vol. 505, p. 682-691
Keywords [en]
Adsorption, Chromium (VI) removal, Kinetics isotherm, Electrospinning, Composite nanofibers
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-215349DOI: 10.1016/j.jcis.2017.06.066ISI: 000410464100073PubMedID: 28654883Scopus ID: 2-s2.0-85021190020OAI: oai:DiVA.org:kth-215349DiVA, id: diva2:1148211
Note

QC 20171010

Available from: 2017-10-10 Created: 2017-10-10 Last updated: 2017-10-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Mohamed, AlaaToprak, MuhammetMuhammed, MamounUheida, Abdusalam
By organisation
Applied PhysicsBiomedical and X-ray Physics
In the same journal
Journal of Colloid and Interface Science
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf