Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rare-earth oxide Li0.3Ni0.9Cu0.07Sr0.03O2-delta composites for advanced fuel cells
Show others and affiliations
2017 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 42, no 34, p. 22214-22221Article in journal (Refereed) Published
Abstract [en]

Recent development on electrolyte-free fuel cell (EFFC) holding the same function with the traditional solid oxide fuel cell (SOFC) but with a much simpler structure has drawn increasing attention. Herein, we report a composite of industrial grade rare-earth precursor for agriculture and Li0.3Ni0.9Cu0.07Sr0.03O2.a, (RE-LNCS) for EFFCs. Both structural and electrical properties are investigated on the composite. It reveals that the RE LNCS possesses a comparable ionic and an electronic conductivities, 0.11 S cm(-1) and 0.20 S cm(-1) at 550 degrees C, respectively. An excellent power output of 1180 mW cm(-2) has been achieved at 550 degrees C, which is much better than that of the conventional anode/electrolyte/cathode based SOFCs, only around 360 mW cm(-2) by using ionic conducting rare-earth material as the electrolyte. Engineering large size cells with active area of 25 cm(2) prepared by tape-casting and hot-pressing gave a power output up to 12 W. This work develops a new functional single layer composite material for EFFCs and further explores the device functions. 

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2017. Vol. 42, no 34, p. 22214-22221
Keyword [en]
Low temperature solid oxide fuel, cells Electrolyte-free fuel cell, Rare-earth materials, Ionic-semiconductor composites, Engineering cell
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-215834DOI: 10.1016/j.ijhydene.2017.03.025ISI: 000411545300065Scopus ID: 2-s2.0-85016473378OAI: oai:DiVA.org:kth-215834DiVA, id: diva2:1149856
Conference
5th Global Conference on Materials Science and Engineering (CMSE), NOV 08-11, 2016, Tunghai Univ, Taichung, TAIWAN
Note

QC 20171017

Available from: 2017-10-17 Created: 2017-10-17 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Zhu, Binzhu

Search in DiVA

By author/editor
Zhu, Binzhu
By organisation
Energy Technology
In the same journal
International journal of hydrogen energy
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf