Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analytic continuation-free Green's function approach to correlated electronic structure calculations
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala, Sweden; Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary.ORCID iD: 0000-0003-2832-3293
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, no 12, 125156Article in journal (Refereed) Published
Abstract [en]

We present a charge self-consistent scheme combining density functional and dynamical mean field theory, which uses Green's functions of multiple-scattering type. In this implementation, the many-body effects are incorporated into the Kohn-Sham iterative scheme without the need for the numerically ill-posed analytic continuation of the Green's function and of the self-energy, which was previously a bottleneck in multiple-scattering-type Green's function approaches. This is achieved by producing the Kohn-Sham Hamiltonian in the subspace of correlated partial waves and allows to formulate the Green's function directly on theMatsubara axis. The spectral moments of the Matsubara Green's function enable us to put together the real-space charge density, therefore, the charge self-consistency can be achieved. Our results for the spectral functions (density of states) and equation-of-state curves for transition-metal elements Fe, Ni, and FeAl compound agree very well with those of Hamiltonian-based LDA+DMFT implementations. The current implementation improves on numerical accuracy, compared to previous implementations where analytic continuation was required at each Kohn-Sham self-consistent step. A minimal effort aside from the multiple-scattering formulation is required, and the method can be generalized in several ways that are interesting for applications to real materials.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2017. Vol. 96, no 12, 125156
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-215810DOI: 10.1103/PhysRevB.96.125156ISI: 000412028700002Scopus ID: 2-s2.0-85030129223OAI: oai:DiVA.org:kth-215810DiVA: diva2:1150208
Note

QC 20171018

Available from: 2017-10-18 Created: 2017-10-18 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Vitos, Levente

Search in DiVA

By author/editor
Vitos, Levente
By organisation
Applied Material Physics
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf