Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)(3)](+)-based hybrid perovskite solar cells
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Uppsala University, Sweden.
2017 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 35, p. 18561-18568Article in journal (Refereed) Published
Abstract [en]

Guanidinium lead iodide (GAPbI(3)) has been synthesized experimentally, but stability remains an issue, which can be modulated by the insertion of bromine (Br) into the system. We have performed a systematic theoretical investigation to see how bromination can tune the stability of GAPbI(3). The optical properties were also determined, and we have found formation enthalpy-based stability in the perovskite systems, which are active in the visible and IR region even after bromine insertion and additionally more active in the IR range with the transition from GAPbI(3) to GAPbBr(3). The spin orbit coupling effect is considered throughout the band structure calculations. The ensemble of the primary and secondary gaps in the half and fully brominated hybrid perovskites leads to the phenomenon of a multipeak response in the optical spectra, which can be subsequently attributed as multivalley optical response behaviour. This multivalley optical behaviour enables the brominated guanidinium-based hybrid perovskites to exhibit broad light harvesting abilities, and this can be perceived as an idea for natural multi-junction solar cells.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2017. Vol. 5, no 35, p. 18561-18568
National Category
Energy Engineering Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-215446DOI: 10.1039/c7ta03114aISI: 000410597200026Scopus ID: 2-s2.0-85029442002OAI: oai:DiVA.org:kth-215446DiVA, id: diva2:1150617
Note

QC 20171019

Available from: 2017-10-19 Created: 2017-10-19 Last updated: 2017-10-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ahuja, Rajeev

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
Journal of Materials Chemistry A
Energy EngineeringChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 128 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf