Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low-cost solution-processed digenite Cu9S5 counter electrode for dye-sensitized solar cells
Show others and affiliations
2017 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, no 61, p. 38452-38457Article in journal (Refereed) Published
Abstract [en]

The development of low-cost alternatives to the commonly used but expensive platinum (Pt) catalyst in dye-sensitized solar cells (DSSCs) is important from a commercial point of view. In this work, Cu9S5 nanocrystalline film is fabricated directly onto a F-doped SnO2 (FTO) substrate by a solution-processed spin-coating method with low temperature post-treatment at 250 °C and it is further explored as a counter electrode (CE) material in DSSCs. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) disclose that Cu9S5 film exhibits a higher catalytic ability for the state-of-the-art cobalt(ii/iii) tris(bipyridyl) ([Co(bpy)3]2+/3+) redox system as compared to the widely used iodine-based electrolyte. Consequently, the DSSC devices based on the cobalt complex redox shuttles show a power conversion efficiency (PCE) of 5.7% measured at 100 mW cm-2 illumination (AM 1.5G), which is substantially higher than that of the iodine-based counterpart (3.9%). This has been the first presentation for the application of digenite copper sulfides as an electrocatalyst for the [Co(bpy)3]2+/3+ redox system in DSSCs. The present finding represents a promising solution for the development of alternative cost-effective CE materials for DSSCs in the future.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2017. Vol. 7, no 61, p. 38452-38457
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-216727DOI: 10.1039/c7ra06822kISI: 000407442000040Scopus ID: 2-s2.0-85027220981OAI: oai:DiVA.org:kth-216727DiVA, id: diva2:1153319
Funder
Swedish Foundation for Strategic Research Swedish Energy AgencyKnut and Alice Wallenberg Foundation
Note

QC 20171030

Available from: 2017-10-30 Created: 2017-10-30 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic ChemistryCentre of Molecular Devices, CMD
In the same journal
RSC Advances
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf