CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Graded Betti Numbers and Hilbert Functions of Graded Cohen-Macaulay ModulesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH , 2007. , iii, 13 p.
##### Series

Trita-MAT. MA, ISSN 1401-2278 ; 2006:05
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-4266ISBN: 978-91-7178-556-5 (print)OAI: oai:DiVA.org:kth-4266DiVA: diva2:11537
##### Public defence

2007-01-26, Sal F3, KTH, Lindstedtsvägen 26, Stockholm, 13:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

QC 20100819Available from: 2007-01-12 Created: 2007-01-12 Last updated: 2010-08-19Bibliographically approved
##### List of papers

In this thesis we study graded Cohen-Macaulay modules and their possible Hilbert functions and graded Betti numbers. In most cases the Cohen-Macaulay modules we study are level modules.

In order to use dualization to study Hilbert functions of artinian level algebras we extend the notion of level sequences and cancellable sequences, introduced by Geramita and Lorenzini, to include Hilbert functions of certain level modules. As in the case of level algebras, a level sequence is cancellable, but now by dualization its reverse is also cancellable which gives a new condition on level sequences. We also give a characterization of the cancellable sequences.

We prove that a sequence of positive integers (h_{0}, h_{1}, . . . ,h_{c}) is the Hilbert function of an artinian level module of codimension two if and only if h*i*_{−1} − 2h*i* + h*i*_{+1}<= 0 for all 0 <= *i* <= c, where we assume that h_{−1} = h_{c+1 }= 0. This generalizes a result already known for artinian level algebras.

Zanello gives a lower bound for Hilbert functions of generic level quotients of artinian level algebras. We give a new and more straightforward proof of Zanello’s result.

Conjectures on the possible graded Betti numbers of Cohen-Macaulay modules up to multiplication by a positive rational number are given. The idea is that the Betti diagrams should be non-negative linear combinations of pure diagrams. The conjectures are verified for modules of codimension two, for Gorenstein algebras of codimension three and for complete intersections. The motivation for the conjectures comes from the Multiplicity conjecture of Herzog, Huneke and Srinivasan.

The h-vectors and graded Betti numbers of level modules up to multiplication by a rational number are studied. Assuming the conjecture, mentioned above, on the set of possible graded Betti numbers of Cohen-Macaulay modules we get a description of the possible h-vectors of level modules up to multiplication by a rational number. We determine,

again up to multiplication by a rational number, the cancellable h-vectors and the h-vectors of level modules with the weak Lefschetz property. Furthermore, we prove that level modules of codimension three satisfy the upper bound of the Multiplicity conjecture and that the lower bound holds if the module, in addition, has the weak Lefschetz property.

1. Artinian level modules and cancellable sequences$(function(){PrimeFaces.cw("OverlayPanel","overlay11532",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay11532",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Artinian level modules of embedding dimension two$(function(){PrimeFaces.cw("OverlayPanel","overlay11533",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay11533",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. On Zanello's lower bound for generic quotients of level algebras$(function(){PrimeFaces.cw("OverlayPanel","overlay11534",{id:"formSmash:j_idt482:2:j_idt486",widgetVar:"overlay11534",target:"formSmash:j_idt482:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Graded betti numbers of Cohen-Macaulay modules and the multiplicity conjecture$(function(){PrimeFaces.cw("OverlayPanel","overlay11535",{id:"formSmash:j_idt482:3:j_idt486",widgetVar:"overlay11535",target:"formSmash:j_idt482:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Graded Betti numbers and h-vectors of level modules$(function(){PrimeFaces.cw("OverlayPanel","overlay11536",{id:"formSmash:j_idt482:4:j_idt486",widgetVar:"overlay11536",target:"formSmash:j_idt482:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});