Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Radiation shielding of high-energy neutrons in SAD
KTH, School of Engineering Sciences (SCI), Physics.
Show others and affiliations
2005 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, Vol. 550, 313-328 p.Article in journal (Refereed) Published
Abstract [en]

The radiation fields and the effective dose at the Sub-critical Assembly in Dubna (SAD) have been studied with the Monte Carlo code MCNPX. The effective dose above the shielding, i.e. in the direction of the incident proton beam of 3.0 mu A, was found to be about 190 mu Sv h(-1). This value meets the dose limits according to Russian radiation protection regulations, provided that access to the rooms in this area is not allowed for working personnel during operation.By separating the radiation fields into a spallation- and a fission-induced part, it was shown that the neutrons with energy higher than 10MeV, originating exclusively from the proton-induced spallation reactions in the target, contribute for the entire part of the radiation fields and the effective dose at the top of the shielding. Consequently, the effective dose above the SAD reactor system is merely dependent on the proton beam properties and not on the reactivity of the core.

Place, publisher, year, edition, pages
2005. Vol. 550, 313-328 p.
Keyword [en]
SAD, effective dose, MCNPX, high-energy neutrons, sub-critical, ADS
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-6747DOI: 10.1016/j.nima.2005.04.071ISI: 000231964500030Scopus ID: 2-s2.0-24344500868OAI: oai:DiVA.org:kth-6747DiVA: diva2:11545
Note
QC 20101005Available from: 2005-09-22 Created: 2005-09-22 Last updated: 2010-10-05Bibliographically approved
In thesis
1. Source efficiency and high-energy neutronics in accelerator-driven systems
Open this publication in new window or tab >>Source efficiency and high-energy neutronics in accelerator-driven systems
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Transmutation of plutonium and minor actinides in accelerator-driven systems (ADS) is being envisaged for the purpose of reducing the long-term radiotoxic inventory of spent nuclear reactor fuel. For this reason, the physics of sub-critical systems are being studied in several different experimental programs across the world. Three of these experiments have been studied within the scope of the present thesis; the MUSE experiments in France, the Yalina experiments in Belarus and the SAD experiments in Russia. The investigations of the MUSE experiments have focused on three different neutronic parameters; the neutron energy spectrum, the external neutron source efficiency and the dynamic neutron source response. It has been shown that the choice of external neutron source has negligible effect on the neutron energy spectrum in the core. Therefore, from this point of view, the MUSE experiments can be considered representative of an ADS. From the analyses of different reactivity determination methods in the Yalina experiments, it can be concluded that the slope fit method gives results in good agreement with the results obtained by the Monte Carlo method MCNP. Moreover, it was found that the Sjöstrand method underestimates keff slightly, in comparison with MCNP and the other investigated methods. In the radiation shielding studies of the SAD experiments, it was shown that the entire part of the effective dose detected at the top of the biological shielding originates from the proton-induced spallation reactions in the target. Thus, it can be concluded that the effective dose is directly proportional to the proton beam power, but independent of the reactivity of the sub-critical core. In order to study the energy gain of an ADS, i.e., the core power divided by the proton beam power, the proton source efficiency, ψ*, has been studied for various ADS models. ψ* is defined in analogy with the neutron source efficiency, φ*, but relates the core power directly to the source protons instead of to the source neutrons. φ* is commonly used in the physics of sub-critical systems, driven by any external neutron source (spallation source, (D,D), (D,T), 252Cf spontaneous fission etc.). On the contrary, ψ* has been defined only for ADS studies, where the system is driven by a proton-induced spallation source. The main advantages of using ψ* instead of φ* are that the way of defining the external source is unique and that ψ* is proportional to the energy gain. An important part of this thesis has been devoted to studies of ψ* as a function of different system parameters, thereby providing a basis for an ADS design with optimal properties for obtaining a high core power over beam power ratio. For instance, ψ* was found to decrease considerably with increasing spallation target radius.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. xiv, 136 p.
Series
Trita-FYS, ISSN 0280-316X ; 2005:46
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-427 (URN)91-7178-147-1 (ISBN)
Public defence
2005-09-30, Sal FA32, AlvaNova, Roslagstullsbacken 21, Stockholm, 14:00 (English)
Opponent
Supervisors
Note
QC 20101005Available from: 2005-09-22 Created: 2005-09-22 Last updated: 2010-10-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TJM-4GGWDGF-3-1M&_cdi=5314&_user=650348&_orig=browse&_coverDate=09%2F11%2F2005&_sk=994499998&view=c&wchp=dGLbVtb-zSkzV&md5=bc89a81b33f54aa3eb090bf0d492cf5f&ie=/sdarticle.pdf

Search in DiVA

By author/editor
Seltborg, PerGudowski, Waclaw
By organisation
Physics
In the same journal
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf