Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
Show others and affiliations
2017 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 40, 35305-35318 p.Article in journal (Refereed) Published
Abstract [en]

In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (M-n,M-c similar to 56 000 g mo1(-1)). Poly(epsilon-caprolactone) (PCL) nanocomposites reinforced with unmodified and modified CNCs in different weight percentages (0.5, 1, and 3 wt %) were prepared via melt extrusion. The resulting composites were evaluated by UV-vis, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and tensile testing. All materials resulted in higher transparency, greater thermal stability, and stronger mechanical properties than unfilled PCL and nanocomposites containing unmodified CNCs. The degradation temperature of PCL reinforced with grafted CNCs was higher than that of micelle-modified CNCs, and the latter was higher than that of latex-adsorbed CNCs with a long PBMA chain length. The results clearly indicate that covalent grafting is superior to physisorption with regard to thermal and mechanical properties of the final nanocomposite. This unique study is of great value for the future design of CNC-based nanocomposites with tailored properties.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 9, no 40, 35305-35318 p.
Keyword [en]
cellulose nanocrystals (CNCs), covalent grafting physisorption, reversible-deactivation radical polymerization (RDRP), poly(epsilon-caprolactone) (PCL), nanocomposites
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-217193DOI: 10.1021/acsami.7b09009ISI: 000413131500079PubMedID: 28895728Scopus ID: 2-s2.0-85031302620OAI: oai:DiVA.org:kth-217193DiVA: diva2:1154510
Funder
Swedish Foundation for Strategic Research , EM11-0022
Note

QC 20171102

Available from: 2017-11-02 Created: 2017-11-02 Last updated: 2017-11-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Boujemaoui, AssyaSanchez, Carmen CoboEngström, JoakimBruce, CarlFogelström, LindaCarlmark, AnnaMalmström, Eva
By organisation
Coating TechnologyWallenberg Wood Science Center
In the same journal
ACS Applied Materials and Interfaces
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 156 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf