Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at root s=13 TeV with the ATLAS detector
KTH, School of Engineering Sciences (SCI), Physics.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
Show others and affiliations
Number of Authors: 2838
2017 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 7, 072002Article in journal (Refereed) Published
Abstract [en]

Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 3.2 fb(-1) collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-k(t) algorithm with radius parameter R = 0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20 < p(T) < 2000 GeV and pseudorapidities of vertical bar eta vertical bar < 4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (vertical bar eta vertical bar < 1.2) for jets with 100 < p(T) < 500 GeV. An uncertainty of about 4.5% is found for low-p(T) jets with p(T) = 20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (vertical bar eta vertical bar > 0.8) is derived from dijet p(T) balance measurements. For jets of p(T) = 80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range vertical bar eta vertical bar > 3.5 and in a narrow slice of 2.2 < vertical bar eta vertical bar < 2.4.

Place, publisher, year, edition, pages
American Physical Society, 2017. Vol. 96, no 7, 072002
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-217299DOI: 10.1103/PhysRevD.96.072002ISI: 000412977500001OAI: oai:DiVA.org:kth-217299DiVA: diva2:1155149
Note

QC 20171107

Available from: 2017-11-07 Created: 2017-11-07 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kastanas, KonstatinosLund-Jensen, BengtRipellino, GiuliaSidebo, EdvinStrandberg, Jonas
By organisation
PhysicsParticle and Astroparticle Physics
In the same journal
Physical Review D: covering particles, fields, gravitation, and cosmology
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf