Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of polydispersity in a turbulent channel flow laden with finite-size particles
KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0003-0418-7864
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0002-4346-4732
2018 (English)In: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 67, p. 54-64Article in journal (Refereed) Published
Abstract [en]

We study turbulent channel flows of monodisperse and polydisperse suspensions of finite-size spheres by means of Direct Numerical Simulations using an immersed boundary method to account for the dispersed phase. Suspensions with 3 different Gaussian distributions of particle radii are considered (i.e. 3 different standard deviations). The distributions are centered on the reference particle radius of the monodisperse suspension. In the most extreme case, the radius of the largest particles is 4 times that of the smaller particles. We consider two different solid volume fractions, 2% and 10%. We find that for all polydisperse cases, both fluid and particles statistics are not substantially altered with respect to those of the monodisperse case. Mean streamwise fluid and particle velocity profiles are almost perfectly overlapping. Slightly larger differences are found for particle velocity fluctuations. These increase close to the wall and decrease towards the centerline as the standard deviation of the distribution is increased. Hence, the behavior of the suspension is mostly governed by excluded volume effects regardless of particle size distribution (at least for the radii here studied). Due to turbulent mixing, particles are uniformly distributed across the channel. However, smaller particles can penetrate more into the viscous and buffer layer and velocity fluctuations are therein altered. Non trivial results are presented for particle-pair statistics.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 67, p. 54-64
Keywords [en]
Suspensions, Particle-laden flows, Particle/fluid flow
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-217629DOI: 10.1016/j.euromechflu.2017.08.003ISI: 000418726900005Scopus ID: 2-s2.0-85028452609OAI: oai:DiVA.org:kth-217629DiVA, id: diva2:1157339
Funder
Swedish Research CouncilSwedish e‐Science Research Center
Note

QC 20171116

Available from: 2017-11-15 Created: 2017-11-15 Last updated: 2018-01-11Bibliographically approved
In thesis
1. Suspensions of finite-size rigid particles in laminar and turbulent flows
Open this publication in new window or tab >>Suspensions of finite-size rigid particles in laminar and turbulent flows
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dispersed multiphase flows occur in many biological, engineering and geophysical applications. Understanding the behavior of suspensions is a difficult task. In the present work, we numerically study the behavior of suspensions of finite-size rigid particles in different flows. Firstly, the sedimentation of spherical particles larger than the Taylor microscale in sustained homogeneous isotropic turbulence and quiescent fluid is investigated. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. We also investigate the settling in quiescent fluid of oblate particles. We find that at low volume fractions the mean settling speed of the suspension is substantially larger than the terminal speed of an isolated oblate. Suspensions of finite-size spheres are also studied in turbulent channel flow. First, we change the solid volume and mass fractions, and the solid-to-fluid density ratio in an idealized scenario where gravity is neglected. Then we investigate the effects of polydispersity. It is found that the statistics are substantially altered by changes in volume fraction. We then consider suspensions of solid spheres in turbulent duct flows. We see that particles accumulate mostly at the corners or at the core depending on the volume fraction. Secondary motions are enhanced by increasing the volume fraction, until excluded volume effects are so strong that the turbulence activity is reduced. The inertial migration of spheres in laminar square duct flows is also investigated. We consider semi-dilute suspensions at different bulk Reynolds numbers and duct-to-particle size ratios. The highest particle concentration is found around the focusing points, except at very large volume fractions. Finally we study the rheology of confined dense suspensions of spheres in simple shear flow. We focus on the weakly inertial regime and show that the effective viscosity varies non-monotonically with increasing confinement.

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2017
Series
TRITA-MEK, ISSN 0348-467X
Keywords
Suspensions, complex fluids, sedimentation, rheology, turbulence
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:kth:diva-217812 (URN)978-91-7729-607-2 (ISBN)
Public defence
2017-12-15, D3, Lindstedtsvägen 5, Stockholm, 10:15 (English)
Opponent
Supervisors
Funder
EU, European Research Council, ERC-2013-CoG-616186, TRITOS
Note

QC 20171117

Available from: 2017-11-17 Created: 2017-11-16 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

The full text will be freely available from 2020-02-29 15:45
Available from 2020-02-29 15:45

Other links

Publisher's full textScopus

Authority records BETA

Fornari, WalterBrandt, Luca

Search in DiVA

By author/editor
Fornari, WalterBrandt, Luca
By organisation
Physicochemical Fluid MechanicsLinné Flow Center, FLOWSeRC - Swedish e-Science Research CentreMechanics
In the same journal
European journal of mechanics. B, Fluids
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf