Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interaction of Sulfur Dioxide and Near-Ambient Pressures of Water Vapor with Cuprous Oxide Surfaces
KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF.
Show others and affiliations
2017 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 43, p. 24011-24024Article in journal (Refereed) Published
Abstract [en]

The interaction of water vapor and sulfur dioxide (SO2) with single crystal cuprous oxide (Cu2O) surfaces of (100) and (111) termination was studied by photoelectron spectroscopy (PES) and density functional theory (DFT). Exposure to near-ambient pressures of water vapor, at 5 × 10-3 %RH and 293 K, hydroxylates both Cu2O surfaces with OH coverage up to 0.38 copper monolayers (ML) for (100) and 0.25 ML for (111). O 1s surface core level shifts indicate that the hydroxylation lifts the (3,0;1,1) reconstruction of the clean (100) surface. On both clean Cu2O terminations, SO2 adsorbs to unsaturated surface oxygen atoms to form SO3 species with coverage, after a saturating SO2 dose, corresponding to 0.20 ML on the Cu2O(100) surface and 0.09 ML for the Cu2O(111) surface. Our combined DFT and PES results suggest that the SO2 to SO3 transformation is largely facilitated by unsaturated copper atoms at the Cu2O(111) surface. SO3-terminated surfaces exposed to low doses of water vapor (≤100 langmuirs) in ultrahigh vacuum show no adsorption or reaction. However, during exposure to near-ambient pressures of water vapor, the SO3 species dissociate, and sulfur replaces a Cu2O lattice oxygen in a reaction that forms Cu2S. The hydroxylation of the Cu2O surfaces is believed to play a central role in the reaction.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 121, no 43, p. 24011-24024
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-217544DOI: 10.1021/acs.jpcc.7b06486ISI: 000414724300019Scopus ID: 2-s2.0-85032831257OAI: oai:DiVA.org:kth-217544DiVA, id: diva2:1157498
Note

QC 20171116

Available from: 2017-11-16 Created: 2017-11-16 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Soldemo, MarkusHalldin Stenlid, JoakimBesharat, ZahraÖnsten, AnneliGöthelid, MatsBrinck, ToreWeissenrieder, Jonas
By organisation
Material Physics, MFApplied Physical Chemistry
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf