Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Turbulence modulation by dense suspensions in channel flows
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0002-4346-4732
2017 (English)In: 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, International Symposium on Turbulence and Shear Flow Phenomena, TSFP10 , 2017, Vol. 1Conference paper (Refereed)
Abstract [en]

Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. In this regime, the main effect of the suspended phase is to alter the rheological behavior of the flow which always displays higher effective viscosity with respect to the carrier fluid. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phase modifies the turbulent dynamics that we know in single-phase fluids. In the present work, we study turbulent channel flows laden with finite-size particles at high volume fraction (F = 0:2) by means of Direct Numerical Simulations. A direct-forcing Immersed Boundary Method has been adopted to couple liquid and solid phases. The two-phase simulations have been performed fixing the bulk Reynolds number at Reb = Ub 2h=n = 12000 (Ub bulk velocity, h channel half-width and n the fluid kinematic viscosity). The particle size is relatively large with respect to the viscous length, i.e. 10 and 20 times, but smaller than large scales. We will present a detailed comparison of the statistical behavior of the particle-laden flow and the corresponding single-phase flow. The presence of the solid phase strongly alters the wall turbulence dynamics and its effect cannot be accounted only considering the higher rheological effective viscosity.

Place, publisher, year, edition, pages
International Symposium on Turbulence and Shear Flow Phenomena, TSFP10 , 2017. Vol. 1
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-217855Scopus ID: 2-s2.0-85033230547ISBN: 9780000000002 OAI: oai:DiVA.org:kth-217855DiVA, id: diva2:1158076
Conference
10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, Swissotel ChicagoChicago, United States, 6 July 2017 through 9 July 2017
Note

QC 20171117

Available from: 2017-11-17 Created: 2017-11-17 Last updated: 2017-11-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records BETA

Brandt, L.uca

Search in DiVA

By author/editor
Brandt, L.uca
By organisation
MechanicsLinné Flow Center, FLOWSeRC - Swedish e-Science Research Centre
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf