Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An IGBT Turn-ON Concept Offering Low Losses Under Motor Drive dv/dt Constraints Based on Diode Current Adaption
Show others and affiliations
2018 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 33, no 2, p. 1143-1153Article in journal (Refereed) Published
Abstract [en]

In this paper, a new low-loss turn-ON concept for the silicon insulated-gate bipolar transistor (Si-IGBT) in combination with silicon p-i-n diode is presented. The concept is tailored for two-level motor converters in the 100 kW to 1 MW range under the constraint that the output voltages slopes are limited in order to protect the motor windings. Moreover, analyses of the IGBT turn-ON and diode reverse recovery voltage slopes are presented concluding that the diode reverse recovery is the worst case. The concept includes a low-cost measurement of the free-wheeling diode current and temperature by the gate driver without necessity of acquiring this information from the converter control board. By using this concept, the output dv/dt at the diode turn-OFF can be kept approximately constant regardless of the commutated current and junction temperature. Hence, the switching losses could be decreased for the currents and temperatures where the voltage slopes are lower when using a conventional gate driver optimized for the worst case. Moreover, results are shown for one such power semiconductor, showing a total switching loss reduction of up to 28% in comparison with a gate driver without current and temperature measurement. Finally, this concept is particularly suitable for high power semiconductor modules in half-bridge configuration which are recently proposed by several suppliers.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2018. Vol. 33, no 2, p. 1143-1153
Keywords [en]
motor drives, insulated gate bipolar transistors, power semiconductor devices
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-217925DOI: 10.1109/TPEL.2017.2688474ISI: 000414414600025Scopus ID: 2-s2.0-85034081872OAI: oai:DiVA.org:kth-217925DiVA, id: diva2:1158907
Note

QC 20171121

Available from: 2017-11-21 Created: 2017-11-21 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Colmenares, JuanNee, Hans-Peter

Search in DiVA

By author/editor
Colmenares, JuanNee, Hans-Peter
By organisation
Electric Power and Energy Systems
In the same journal
IEEE transactions on power electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 234 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf