Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade
Show others and affiliations
2017 (English)In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, article id 014030Article in journal (Refereed) Published
Abstract [en]

Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2017. Vol. T170, article id 014030
Keywords [en]
plasma-facing components, tungsten, melting, edge-localized modes
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-217722DOI: 10.1088/1402-4896/aa8be8ISI: 000414120500030OAI: oai:DiVA.org:kth-217722DiVA, id: diva2:1159641
Conference
16th International Conference on Plasma-Facing Materials and Components for Fusion Applications, MAY 16-19, 2017, GERMANY
Note

QC 20171123

Available from: 2017-11-23 Created: 2017-11-23 Last updated: 2017-11-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Ratynskaia, Svetlana V.

Search in DiVA

By author/editor
Ratynskaia, Svetlana V.Thorén, E.
By organisation
Fusion Plasma Physics
In the same journal
Physica Scripta
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf