Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability
KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
Show others and affiliations
2017 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 605, article id A41Article in journal (Refereed) Published
Abstract [en]

Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims. We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods. The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed fulldisk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results. Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions. Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying magnetic structures is demonstrated in this study. Sophisticated feature identification and segmentation tools are important in providing more insights into the role of various magnetic features in both the short-and long-term changes in the solar irradiance.

Place, publisher, year, edition, pages
EDP SCIENCES S A , 2017. Vol. 605, article id A41
Keywords [en]
Sun: magnetic fields, Sun: atmosphere, Sun: corona
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-217062DOI: 10.1051/0004-6361/201629924ISI: 000412231200100Scopus ID: 2-s2.0-85028948906OAI: oai:DiVA.org:kth-217062DiVA, id: diva2:1159748
Note

QC 20171123

Available from: 2017-11-23 Created: 2017-11-23 Last updated: 2017-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Giono, Gabriel
By organisation
Space and Plasma Physics
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf