Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the beta-subunit of the heterotrimeric G-protein
Show others and affiliations
2017 (English)In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 92, no 3, 386-399 p.Article in journal (Refereed) Published
Abstract [en]

Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the G- (agb1-2) or G-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses. Significance Statement The plant heterotrimeric G protein complex is an essential component of Pathogen Associated Molecular Pattern-triggered immunity (PTI) and of plant disease resistance to several types of pathogens. We found that modification of the degree of xylan acetylation in plant cell walls activates PTI-independent resistance responses that counterbalance the hypersusceptibility to particular pathogens of plants lacking the heterotrimeric G subunit. These data demonstrate that immune deficient response can be partially compensated by the activation of cell wall-triggered immunity that confers specific disease resistance.

Place, publisher, year, edition, pages
WILEY , 2017. Vol. 92, no 3, 386-399 p.
Keyword [en]
heterotrimeric G-protein, AGB1, agb1-2, plant cell wall, xylan, necrotrophic fungi, immunity, pathogen-associated molecular pattern, Plectosphaerella cucumerina, Arabidopsis thaliana
National Category
Plant Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-217023DOI: 10.1111/tpj.13660ISI: 000412932100005PubMedID: 28792629Scopus ID: 2-s2.0-85029405800OAI: oai:DiVA.org:kth-217023DiVA: diva2:1160196
Note

QC 20171124

Available from: 2017-11-24 Created: 2017-11-24 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Authority records BETA

McKee, Lauren S.Bulone, Vincent

Search in DiVA

By author/editor
Melida, HugoMcKee, Lauren S.Bulone, Vincent
By organisation
GlycoscienceWallenberg Wood Science Center
In the same journal
The Plant Journal
Plant Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf