Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preparing HPC Applications for the Exascale Era: A Decoupling Strategy
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). (HPC)ORCID iD: 0000-0003-4158-3583
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).ORCID iD: 0000-0002-9901-9857
Show others and affiliations
2017 (English)In: 2017 46th International Conference on Parallel Processing (ICPP), Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 8025274Conference paper, Published paper (Refereed)
Abstract [en]

Production-quality parallel applications are often a mixture of diverse operations, such as computation- and communication-intensive, regular and irregular, tightly coupled and loosely linked operations. In conventional construction of parallel applications, each process performs all the operations, which might result inefficient and seriously limit scalability, especially at large scale. We propose a decoupling strategy to improve the scalability of applications running on large-scale systems. Our strategy separates application operations onto groups of processes and enables a dataflow processing paradigm among the groups. This mechanism is effective in reducing the impact of load imbalance and increases the parallel efficiency by pipelining multiple operations. We provide a proof-of-concept implementation using MPI, the de-facto programming system on current supercomputers. We demonstrate the effectiveness of this strategy by decoupling the reduce, particle communication, halo exchange and I/O operations in a set of scientific and data-analytics applications. A performance evaluation on 8,192 processes of a Cray XC40 supercomputer shows that the proposed approach can achieve up to 4x performance improvement.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2017. article id 8025274
Series
Proceedings of the International Conference on Parallel Processing, ISSN 0190-3918
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-218333DOI: 10.1109/ICPP.2017.9Scopus ID: 2-s2.0-85030654606ISBN: 9781538610428 (print)OAI: oai:DiVA.org:kth-218333DiVA, id: diva2:1160590
Conference
46th International Conference on Parallel Processing, ICPP 2017, Bristol, United Kingdom, 14 August 2017 through 17 August 2017
Note

QC 20171128

Available from: 2017-11-27 Created: 2017-11-27 Last updated: 2018-01-13Bibliographically approved
In thesis
1. Data Movement on Emerging Large-Scale Parallel Systems
Open this publication in new window or tab >>Data Movement on Emerging Large-Scale Parallel Systems
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Large-scale HPC systems are an important driver for solving computational problems in scientific communities. Next-generation HPC systems will not only grow in scale but also in heterogeneity. This increased system complexity entails more challenges to data movement in HPC applications. Data movement on emerging HPC systems requires asynchronous fine-grained communication and efficient data placement in the main memory. This thesis proposes an innovative programming model and algorithm to prepare HPC applications for the next computing era: (1) a data streaming model that supports emerging data-intensive applications on supercomputers, (2) a decoupling model that improves parallelism and mitigates the impact of imbalance in applications, (3) a new framework and methodology for predicting the impact of largescale heterogeneous memory systems on HPC applications, and (4) a data placement algorithm that uses a set of rules and a decision tree to determine the data-to-memory mapping in heterogeneous main memory.

The proposed approaches in this thesis are evaluated on multiple supercomputers with different processors and interconnect networks. The evaluation uses a diverse set of applications that represent conventional scientific applications and emerging data-analytic workloads on HPC systems. The experimental results on the petascale testbed show that the approaches obtain increasing performance improvements as system scale increases and this trend supports the approaches as a valuable contribution towards future HPC systems.

Abstract [sv]

Storskaliga HPC-system är en viktig drivkraft för att lösa datorproblem i vetenskapliga samhällen. Nästa generations HPC-system kommer inte bara att växa i skala utan också i heterogenitet. Denna ökade systemkomplexitet medför flera utmaningar för dataförflyttning i HPC-applikationer. Dataförflyttning på nya HPC-system kräver asynkron, finkorrigerad kommunikation och en effektiv dataplacering i huvudminnet.

Denna avhandling föreslår en innovativ programmeringsmodell och algoritm för att förbereda HPC-applikationer för nästa generation: (1) en dataströmningsmodell som stöder nya dataintensiva applikationer på superdatorer, (2) en kopplingsmodell som förbättrar parallelliteten och minskar obalans i applikationer, (3) en ny metologi och struktur för att förutse effekten av storskaliga, heterogena minnessystem på HPC-applikationer, och (4) en datalägesalgoritm som använder en uppsättning av regler och ett beslutsträd för att bestämma kartläggningen av data-till-minnet i det heterogena huvudminnet.

Den föreslagna programmeringsmodellen i denna avhandling är utvärderad på flera superdatorer med olika processorer och sammankopplingsnät. Utvärderingen använder en mängd olika applikationer som representerar konventionella vetenskapliga applikationer och nya dataanalyser på HPC-system. Experimentella resultat på testbädden i petascala visar att programmeringsmodellen förbättrar prestandan när systemskalan ökar. Denna trend indikerar att modellen är ett värdefullt bidrag till framtida HPC-system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. p. 116
Series
TRITA-CSC-A, ISSN 1653-5723 ; 2017:25
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-218338 (URN)978-91-7729-592-1 (ISBN)
Public defence
2017-12-18, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20171128

Available from: 2017-11-28 Created: 2017-11-27 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Laure, ErwinMarkidis, Stefano

Search in DiVA

By author/editor
Peng, Ivy BoLaure, ErwinMarkidis, Stefano
By organisation
Computational Science and Technology (CST)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf