Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Major-Index Preserving Map on Fillings
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2017 (English)In: The Electronic Journal of Combinatorics, ISSN 1097-1440, E-ISSN 1077-8926, Vol. 24, no 4, article id P4.3Article in journal (Refereed) Published
Abstract [en]

We generalize a map by S. Mason regarding two combinatorial models for key polynomials, in a way that accounts for the major index. Furthermore we define a similar variant of this map, that regards alternative models for the modified Macdonald polynomials at t = 0, and thus partially answers a question by J. Haglund. These maps together imply a certain uniqueness property regarding inversion- and coinversion-free fillings. These uniqueness properties allow us to generalize the notion of charge to a non-symmetric setting, thus answering a question by A. Lascoux and the analogous question in the symmetric setting proves a conjecture by K. Nelson.

Place, publisher, year, edition, pages
2017. Vol. 24, no 4, article id P4.3
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-218233ISI: 000414866100006Scopus ID: 2-s2.0-85031091360OAI: oai:DiVA.org:kth-218233DiVA, id: diva2:1160777
Note

QC 20171128

Available from: 2017-11-28 Created: 2017-11-28 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records BETA

Alexandersson, Per

Search in DiVA

By author/editor
Alexandersson, Per
By organisation
Mathematics (Div.)
In the same journal
The Electronic Journal of Combinatorics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf